Display options
Share it on

Front Bioeng Biotechnol. 2015 Apr 01;3:45. doi: 10.3389/fbioe.2015.00045. eCollection 2015.

Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine.

Frontiers in bioengineering and biotechnology

Mikaël M Martino, Sime Brkic, Emmanuela Bovo, Maximilian Burger, Dirk J Schaefer, Thomas Wolff, Lorenz Gürke, Priscilla S Briquez, Hans M Larsson, Roberto Gianni-Barrera, Jeffrey A Hubbell, Andrea Banfi

Affiliations

  1. Host Defense, Immunology Frontier Research Center, Osaka University , Osaka , Japan.
  2. Cell and Gene Therapy, Department of Biomedicine, Basel University , Basel , Switzerland ; Department of Surgery, Basel University Hospital , Basel , Switzerland.
  3. Cell and Gene Therapy, Department of Biomedicine, Basel University , Basel , Switzerland ; Department of Surgery, Basel University Hospital , Basel , Switzerland ; Plastic, Reconstructive, Aesthetic and Hand Surgery, Department of Surgery, Basel University Hospital , Basel , Switzerland.
  4. Plastic, Reconstructive, Aesthetic and Hand Surgery, Department of Surgery, Basel University Hospital , Basel , Switzerland.
  5. Cell and Gene Therapy, Department of Biomedicine, Basel University , Basel , Switzerland ; Department of Surgery, Basel University Hospital , Basel , Switzerland ; Vascular Surgery, Department of Surgery, Basel University Hospital , Basel , Switzerland.
  6. Vascular Surgery, Department of Surgery, Basel University Hospital , Basel , Switzerland.
  7. Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Lausanne , Switzerland.
  8. Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Lausanne , Switzerland ; Institute for Molecular Engineering, University of Chicago , Chicago, IL , USA ; Argonne National Laboratory, Materials Science Division , Argonne, IL , USA.

PMID: 25883933 PMCID: PMC4381713 DOI: 10.3389/fbioe.2015.00045

Abstract

Blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular, the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.

Keywords: angiogenesis; extracellular matrix; fibrin; growth factors; protein engineering

References

  1. J Vasc Surg. 2007 Jan;45 Suppl S:S5-67 - PubMed
  2. Cardiovasc Res. 2009 Sep 1;83(4):663-71 - PubMed
  3. Biomaterials. 2007 Feb;28(6):1123-31 - PubMed
  4. J Cell Mol Med. 2012 Jan;16(1):107-17 - PubMed
  5. Wound Repair Regen. 2009 Mar-Apr;17(2):153-62 - PubMed
  6. Trends Cardiovasc Med. 2004 Nov;14(8):295-300 - PubMed
  7. Development. 2000 Sep;127(18):3941-6 - PubMed
  8. J Endocrinol. 2011 May;209(2):139-51 - PubMed
  9. Circ Res. 2002 May 17;90(9):966-73 - PubMed
  10. Gene Ther. 2011 Dec;18(12):1166-72 - PubMed
  11. J Theor Biol. 2008 Jan 7;250(1):25-36 - PubMed
  12. Circ Res. 2004 Apr 30;94(8):1124-32 - PubMed
  13. Nature. 2007 Feb 15;445(7129):776-80 - PubMed
  14. Circ Res. 2006 Oct 13;99(8):853-60 - PubMed
  15. J R Soc Interface. 2011 Feb 6;8(55):153-70 - PubMed
  16. FASEB J. 2010 Dec;24(12):4711-21 - PubMed
  17. Circ Res. 2009 Oct 9;105(8):724-36 - PubMed
  18. J Cell Physiol. 2010 Nov;225(2):348-53 - PubMed
  19. Lancet. 1996 Aug 10;348(9024):370-4 - PubMed
  20. Biomaterials. 2013 Dec;34(36):9201-9 - PubMed
  21. Biomaterials. 2012 Apr;33(12):3475-84 - PubMed
  22. Nat Rev Cardiol. 2013 Jul;10(7):387-96 - PubMed
  23. FASEB J. 2012 Jun;26(6):2486-97 - PubMed
  24. Adv Drug Deliv Rev. 2007 Nov 10;59(13):1366-81 - PubMed
  25. Nat Med. 2001 May;7(5):532-4 - PubMed
  26. Am J Pathol. 2001 Mar;158(3):1145-60 - PubMed
  27. J Cell Biol. 2003 Jun 23;161(6):1163-77 - PubMed
  28. FASEB J. 2006 Dec;20(14):2657-9 - PubMed
  29. J Invest Dermatol. 2008 Jun;128(6):1535-44 - PubMed
  30. Circulation. 2005 Dec 20;112(25):3937-46 - PubMed
  31. Circulation. 2013 Jan 1;127(1):e6-e245 - PubMed
  32. Stem Cells. 2010 Mar 31;28(3):611-9 - PubMed
  33. Gene Ther. 2012 Jun;19(6):622-9 - PubMed
  34. Biomaterials. 2007 Sep;28(26):3856-66 - PubMed
  35. Biomaterials. 2013 Aug;34(24):5958-68 - PubMed
  36. Cardiovasc Res. 2007 Jul 1;75(1):178-85 - PubMed
  37. Biomaterials. 2007 Apr;28(12):2069-76 - PubMed
  38. Biomaterials. 2008 Apr;29(11):1720-9 - PubMed
  39. Tissue Eng Part A. 2015 Apr;21(7-8):1217-27 - PubMed
  40. Tissue Eng. 2007 Dec;13(12):2827-37 - PubMed
  41. Cell Regul. 1991 Jul;2(7):503-12 - PubMed
  42. Lab Invest. 2000 Jan;80(1):99-115 - PubMed
  43. EMBO J. 2002 Apr 15;21(8):1939-47 - PubMed
  44. Biomaterials. 2006 Oct;27(30):5242-51 - PubMed
  45. Dev Immunol. 2000;7(2-4):89-101 - PubMed
  46. Genes Dev. 2002 Oct 15;16(20):2684-98 - PubMed
  47. Wound Repair Regen. 2007 Mar-Apr;15(2):245-51 - PubMed
  48. Science. 2014 Feb 21;343 (6173):885-8 - PubMed
  49. Nature. 1996 Apr 4;380(6573):435-9 - PubMed
  50. Nature. 1996 Apr 4;380(6573):439-42 - PubMed
  51. Mol Biol Cell. 1993 Dec;4(12):1317-26 - PubMed
  52. Curr Opin Pharmacol. 2010 Apr;10(2):208-11 - PubMed
  53. Nat Med. 2000 Oct;6(10):1102-3 - PubMed
  54. Curr Opin Cell Biol. 2003 Oct;15(5):565-71 - PubMed
  55. Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3287-92 - PubMed
  56. Mol Cell. 1998 Nov;2(5):549-58 - PubMed
  57. J Am Coll Cardiol. 2000 Apr;35(5):1323-30 - PubMed
  58. PLoS One. 2013 Apr 18;8(4):e62076 - PubMed
  59. Circulation. 2000 Aug 22;102(8):898-901 - PubMed
  60. Hum Gene Ther Methods. 2013 Feb;24(1):28-37 - PubMed
  61. Hum Gene Ther Methods. 2012 Oct;23(5):346-56 - PubMed
  62. FASEB J. 2003 Dec;17(15):2260-2 - PubMed
  63. Nat Biotechnol. 2001 Nov;19(11):1029-34 - PubMed
  64. Sci Transl Med. 2011 Sep 14;3(100):100ra89 - PubMed
  65. Angew Chem Int Ed Engl. 2002 Feb 1;41(3):391-412 - PubMed
  66. J Clin Invest. 2004 Feb;113(4):516-27 - PubMed
  67. Cell. 2011 Sep 16;146(6):873-87 - PubMed
  68. Proc Natl Acad Sci U S A. 2014 May 13;111(19):6952-7 - PubMed
  69. Biomaterials. 2011 Jan;32(2):565-78 - PubMed
  70. Trends Biotechnol. 2008 Aug;26(8):434-41 - PubMed
  71. Biomaterials. 2013 Jun;34(19):4602-11 - PubMed
  72. Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4563-8 - PubMed
  73. Science. 2009 Nov 27;326(5957):1216-9 - PubMed
  74. Nat Cell Biol. 2002 Apr;4(4):E75-6 - PubMed
  75. J Gene Med. 2002 Jul-Aug;4(4):371-80 - PubMed
  76. Curr Atheroscler Rep. 2005 May;7(3):227-34 - PubMed
  77. Ther Deliv. 2012 Jun;3(6):693-714 - PubMed
  78. Regen Med. 2009 Jan;4(1):65-80 - PubMed
  79. Annu Rev Cell Dev Biol. 2003;19:173-206 - PubMed
  80. Nat Rev Cancer. 2010 Aug;10(8):587-93 - PubMed
  81. Genes Dev. 2003 Aug 1;17(15):1835-40 - PubMed

Publication Types