Display options
Share it on

Beilstein J Nanotechnol. 2015 Feb 27;6:595-604. doi: 10.3762/bjnano.6.61. eCollection 2015.

Overview of nanoscale NEXAFS performed with soft X-ray microscopes.

Beilstein journal of nanotechnology

Peter Guttmann, Carla Bittencourt

Affiliations

  1. Institute for Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany.
  2. ChIPS, University of Mons, B-7000, Mons, Belgium.

PMID: 25821700 PMCID: PMC4362056 DOI: 10.3762/bjnano.6.61

Abstract

Today, in material science nanoscale structures are becoming more and more important. Not only for the further miniaturization of semiconductor devices like carbon nanotube based transistors, but also for newly developed efficient energy storage devices, gas sensors or catalytic systems nanoscale and functionalized materials have to be analysed. Therefore, analytical tools like near-edge X-ray absorption fine structure (NEXAFS) spectroscopy has to be applied on single nanostructures. Scanning transmission X-ray microscopes (STXM) as well as full-field transmission X-ray microscopes (TXM) allow the required spatial resolution to study individual nanostructures. In the soft X-ray energy range only STXM was used so far for NEXAFS studies. Due to its unique setup, the TXM operated by the Helmholtz-Zentrum Berlin (HZB) at the electron storage ring BESSY II is the first one in the soft X-ray range which can be used for NEXAFS spectroscopy studies which will be shown in this review. Here we will give an overview of the different microscopes used for NEXAFS studies and describe their advantages and disadvantages for different samples.

Keywords: NEXAFS; STXM; TXM; X-ray microscopy

References

  1. Q Rev Biophys. 1995 Feb;28(1):33-130 - PubMed
  2. Angew Chem Int Ed Engl. 2012 Aug 6;51(32):7956-9 - PubMed
  3. Nature. 2010 Dec 23;468(7327):1088-90 - PubMed
  4. Nat Methods. 2010 Dec;7(12):985-7 - PubMed
  5. Philos Trans A Math Phys Eng Sci. 2009 Sep 28;367(1903):3683-97 - PubMed
  6. J Biol Chem. 2006 Mar 17;281(11):7614-22 - PubMed
  7. J Electron Microsc (Tokyo). 2010 Aug;59 Suppl 1:S7-13 - PubMed
  8. Nano Lett. 2013 Feb 13;13(2):824-8 - PubMed
  9. Ultramicroscopy. 1998 Nov;75(2):85-104 - PubMed
  10. J Synchrotron Radiat. 2002 Jul 1;9(Pt 4):254-7 - PubMed
  11. Micron. 2008 Aug;39(6):741-8 - PubMed
  12. J Struct Biol. 2012 Feb;177(2):212-23 - PubMed
  13. Nanoscale Res Lett. 2013 Nov 06;8(1):463 - PubMed
  14. Nanotechnology. 2013 Jul 5;24(26):265603 - PubMed
  15. Rev Sci Instrum. 2008 Nov;79(11):113704 - PubMed
  16. Opt Express. 2009 Sep 28;17(20):17669-77 - PubMed
  17. J Microsc. 2007 May;226(Pt 2):175-81 - PubMed
  18. Nat Chem. 2009 Aug;1(5):415-8 - PubMed
  19. Opt Express. 2013 May 20;21(10):11747-56 - PubMed
  20. Beilstein J Nanotechnol. 2012;3:789-97 - PubMed
  21. J Struct Biol. 2013 Jan;181(1):77-81 - PubMed
  22. Q Rev Biophys. 1980 Aug;13(3):297-315 - PubMed
  23. Nat Commun. 2011 Jun 28;2:372 - PubMed
  24. Methods Mol Biol. 2014;1117:757-81 - PubMed
  25. J Contam Hydrol. 2011 Mar 1;120-121:45-55 - PubMed
  26. J Microsc. 2000 Feb;197(Pt 2):173-84 - PubMed
  27. Nano Lett. 2007 Aug;7(8):2435-40 - PubMed
  28. Science. 1993 Nov 26;262(5138):1427-9 - PubMed
  29. Opt Express. 2012 Mar 12;20(6):5830-9 - PubMed
  30. Macromol Rapid Commun. 2010 Oct 1;31(19):1706-12 - PubMed
  31. Beilstein J Nanotechnol. 2012;3:345-50 - PubMed

Publication Types