Display options
Share it on

Beilstein J Nanotechnol. 2015 Mar 03;6:632-9. doi: 10.3762/bjnano.6.64. eCollection 2015.

A versatile strategy towards non-covalent functionalization of graphene by surface-confined supramolecular self-assembly of Janus tectons.

Beilstein journal of nanotechnology

Ping Du, David Bléger, Fabrice Charra, Vincent Bouchiat, David Kreher, Fabrice Mathevet, André-Jean Attias

Affiliations

  1. Institut Parisien de Chimie Moléculaire, Chimie des Polymères, UMR CNRS 8232, Université Pierre et Marie Curie, 3 rue Galilée, 94200 Ivry, France.
  2. Laboratoire de Nanophotonique, Service de Physique de l'Etat Condensé CEA/Saclay 91191 Gif sur Yvette Cedex, France.
  3. Department Nanosciences Institut Neel, CNRS, Univ. Grenoble-Alpes, 38042 Grenoble Cedex 09, France.

PMID: 25821703 PMCID: PMC4362293 DOI: 10.3762/bjnano.6.64

Abstract

Two-dimensional (2D), supramolecular self-assembly at surfaces is now well-mastered with several existing examples. However, one remaining challenge to enable future applications in nanoscience is to provide potential functionalities to the physisorbed adlayer. This work reviews a recently developed strategy that addresses this key issue by taking advantage of a new concept, Janus tecton materials. This is a versatile, molecular platform based on the design of three-dimensional (3D) building blocks consisting of two faces linked by a cyclophane-type pillar. One face is designed to steer 2D self-assembly onto C(sp(2))-carbon-based flat surfaces, the other allowing for the desired functionality above the substrate with a well-controlled lateral order. In this way, it is possible to simultaneously obtain a regular, non-covalent paving as well as supramolecular functionalization of graphene, thus opening interesting perspectives for nanoscience applications.

Keywords: C(sp2)-based substrates; Janus tecton; graphene; liquid–solid interface; scanning tunnelling microscopy; supramolecular self-assembly

References

  1. Angew Chem Int Ed Engl. 2014 Sep 15;53(38):10060-6 - PubMed
  2. Nat Chem. 2009 Jun;1(3):206-11 - PubMed
  3. Angew Chem Int Ed Engl. 2007;46(1-2):245-9 - PubMed
  4. Chem Rev. 2012 Nov 14;112(11):6156-214 - PubMed
  5. Science. 2009 Jun 19;324(5934):1530-4 - PubMed
  6. Science. 2009 May 8;324(5928):768-71 - PubMed
  7. ACS Nano. 2013 May 28;7(5):4070-81 - PubMed
  8. Nature. 2005 Sep 29;437(7059):671-9 - PubMed
  9. Science. 2006 Aug 18;313(5789):961-2 - PubMed
  10. Angew Chem Int Ed Engl. 2011 Jul 11;50(29):6562-6 - PubMed
  11. Angew Chem Int Ed Engl. 2007;46(39):7404-7 - PubMed
  12. Nano Lett. 2013 Jul 10;13(7):3199-204 - PubMed
  13. Nat Mater. 2011 Jun 19;10(7):502-6 - PubMed
  14. Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):17927-30 - PubMed
  15. Nanotechnology. 2010 Nov 26;21(47):475208 - PubMed
  16. Nature. 2000 Nov 30;408(6812):541-8 - PubMed
  17. Acc Chem Res. 2012 Aug 21;45(8):1309-20 - PubMed
  18. J Am Chem Soc. 2011 Nov 9;133(44):17614-7 - PubMed
  19. Nat Nanotechnol. 2008 Aug;3(8):491-5 - PubMed
  20. J Am Chem Soc. 2006 Apr 5;128(13):4212-3 - PubMed
  21. Small. 2014 Mar 26;10(6):1038-49 - PubMed
  22. Nature. 2003 Aug 28;424(6952):1029-31 - PubMed
  23. Phys Chem Chem Phys. 2013 Apr 14;15(14):4939-46 - PubMed
  24. Annu Rev Phys Chem. 2007;58:375-407 - PubMed

Publication Types