Display options
Share it on

Front Microbiol. 2015 Apr 09;6:263. doi: 10.3389/fmicb.2015.00263. eCollection 2015.

The geomicrobiology of CO2 geosequestration: a focused review on prokaryotic community responses to field-scale CO2 injection.

Frontiers in microbiology

Andre Mu, John W Moreau

Affiliations

  1. Moreau Lab, School of Earth Sciences, Faculty of Science, University of Melbourne Melbourne, VIC, Australia ; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne Melbourne, VIC, Australia.
  2. Moreau Lab, School of Earth Sciences, Faculty of Science, University of Melbourne Melbourne, VIC, Australia.

PMID: 25914677 PMCID: PMC4391042 DOI: 10.3389/fmicb.2015.00263

Abstract

Our primary research paper (Mu et al., 2014) demonstrated selective changes to a deep subsurface prokaryotic community as a result of CO2 stress. Analyzing geochemical and microbial 16S rRNA gene profiles, we evaluated how in situ prokaryotic communities responded to increased CO2 and the presence of trace organic compounds, and related temporal shifts in phylogeny to changes in metabolic potential. In this focused review, we extend upon our previous discussion to present analysis of taxonomic unit co-occurrence profiles from the same field experiment, to attempt to describe dynamic community behavior within the deep subsurface. Understanding the physiology of the subsurface microbial biosphere, including how key functional groups integrate into the community, will be critical to determining the fate of injected CO2. For example, community-wide network analyses may provide insights to whether microbes cooperatively produce biofilm biomass, and/or biomineralize the CO2, and hence, induce changes to formation porosity or changes in electron flow. Furthermore, we discuss potential impacts to the feasibility of subsurface CO2 storage of selectively enriching for particular metabolic functions (e.g., methanogenesis) as a result of CO2 injection.

Keywords: CO2 geosequestration; CODH; deep subsurface; methanogenesis; microbial response; network analysis; sulfur cycling; systems biology

References

  1. Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):E35-41 - PubMed
  2. Science. 2009 Oct 30;326(5953):716-8 - PubMed
  3. Nat Protoc. 2007;2(10):2366-82 - PubMed
  4. PLoS One. 2013;8(2):e56335 - PubMed
  5. Environ Sci Technol. 2013 Sep 17;47(18):10708-17 - PubMed
  6. Sci Am. 1996 Oct;275(4):68-73 - PubMed
  7. Nat Methods. 2012 Nov;9(11):1069-76 - PubMed
  8. Appl Environ Microbiol. 2007 Dec;73(23):7664-79 - PubMed
  9. J Microbiol Methods. 2006 Aug;66(2):194-205 - PubMed
  10. Science. 1994 Dec 23;266:1973-5 - PubMed
  11. Microbiol Mol Biol Rev. 2004 Dec;68(4):669-85 - PubMed
  12. Genome Res. 2010 Jul;20(7):947-59 - PubMed
  13. Nat Rev Microbiol. 2012 Sep;10(9):631-40 - PubMed
  14. Science. 2001 Oct 26;294(5543):804-8 - PubMed
  15. Environ Sci Technol. 2010 Jan 1;44(1):24-33 - PubMed
  16. Microb Ecol. 1999 May;37(4):263-275 - PubMed
  17. Front Microbiol. 2013 Mar 15;4:50 - PubMed
  18. FEMS Microbiol Rev. 2000 Oct;24(4):403-27 - PubMed
  19. Microb Ecol. 1988 Jul;16(1):31-48 - PubMed
  20. Science. 1982 Jun 11;216(4551):1227-30 - PubMed
  21. Microb Ecol. 1993 Jan;25(1):35-50 - PubMed
  22. Front Microbiol. 2014 May 14;5:209 - PubMed
  23. Genome Biol. 2007;8(1):R10 - PubMed
  24. FEMS Microbiol Ecol. 2013 Jul;85(1):62-73 - PubMed
  25. Appl Environ Microbiol. 2007 May;73(9):2860-70 - PubMed
  26. Environ Sci Technol. 2013 Jan 2;47(1):23-36 - PubMed
  27. Arch Microbiol. 2014 Aug;196(8):531-44 - PubMed
  28. Annu Rev Microbiol. 1984;38:265-92 - PubMed
  29. Appl Environ Microbiol. 1983 Jan;45(1):187-92 - PubMed
  30. Appl Environ Microbiol. 1987 Nov;53(11):2636-41 - PubMed
  31. Environ Microbiol. 2009 May;11(5):1027-37 - PubMed
  32. Curr Microbiol. 1999 Aug;39(2):99-102 - PubMed
  33. Appl Environ Microbiol. 2004 Dec;70(12):6998-7009 - PubMed
  34. Environ Sci Technol. 2013 Jan 2;47(1):142-9 - PubMed
  35. Microbiology. 2010 Mar;156(Pt 3):609-43 - PubMed
  36. Appl Environ Microbiol. 2007 Aug;73(16):5261-7 - PubMed
  37. FEMS Microbiol Ecol. 2004 Jul 1;49(1):97-107 - PubMed
  38. Bioinformatics. 2010 Jan 15;26(2):266-7 - PubMed
  39. Nat Methods. 2010 May;7(5):335-6 - PubMed
  40. Emerg Infect Dis. 2002 Sep;8(9):881-90 - PubMed
  41. Geochim Cosmochim Acta. 1997 Dec;61(24):5351-61 - PubMed
  42. Ecol Lett. 2006 Jun;9(6):741-58 - PubMed
  43. Environ Microbiol Rep. 2014 Feb;6(1):45-56 - PubMed
  44. Front Microbiol. 2014 Oct 31;5:531 - PubMed
  45. Environ Sci Technol. 2014 Aug 19;48(16):9094-102 - PubMed
  46. Appl Environ Microbiol. 2001 Feb;67(2):888-94 - PubMed
  47. Appl Environ Microbiol. 2003 Sep;69(9):5609-21 - PubMed
  48. FEMS Microbiol Ecol. 2014 Dec;90(3):908-21 - PubMed
  49. Front Microbiol. 2014 Sep 25;5:507 - PubMed
  50. Annu Rev Microbiol. 1994;48:311-43 - PubMed
  51. PLoS Comput Biol. 2009 Dec;5(12):e1000593 - PubMed
  52. Nature. 2013 Feb 28;494(7438):416-9 - PubMed
  53. J Biotechnol. 2013 Sep 20;167(4):393-403 - PubMed
  54. Curr Opin Microbiol. 2005 Jun;8(3):253-9 - PubMed
  55. Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10583-8 - PubMed
  56. Crit Rev Biochem Mol Biol. 2004 May-Jun;39(3):165-95 - PubMed
  57. Bioinformatics. 2010 Oct 1;26(19):2460-1 - PubMed
  58. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 - PubMed
  59. Annu Rev Microbiol. 2003;57:369-94 - PubMed
  60. Appl Microbiol Biotechnol. 2008 Jun;79(3):499-510 - PubMed
  61. Sci Total Environ. 2009 Dec 1;407(24):6255-66 - PubMed
  62. FEMS Microbiol Ecol. 2012 Jan;79(1):240-50 - PubMed
  63. Appl Environ Microbiol. 1998 Oct;64(10):3869-77 - PubMed
  64. Appl Environ Microbiol. 2010 Jul;76(14):4819-28 - PubMed
  65. Appl Environ Microbiol. 2000 Sep;66(9):3842-9 - PubMed
  66. FEMS Microbiol Ecol. 2008 Jun;64(3):494-506 - PubMed
  67. Microbiol Mol Biol Rev. 2004 Dec;68(4):686-91 - PubMed
  68. Int J Syst Evol Microbiol. 2012 Jun;62(Pt 6):1389-95 - PubMed

Publication Types