Display options
Share it on

Front Microbiol. 2015 Apr 10;6:288. doi: 10.3389/fmicb.2015.00288. eCollection 2015.

Exopolysaccharides enriched in rare sugars: bacterial sources, production, and applications.

Frontiers in microbiology

Christophe Roca, Vitor D Alves, Filomena Freitas, Maria A M Reis

Affiliations

  1. Research Unit on Applied Molecular Biosciences, Rede de Química e Tecnologia, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , Caparica, Portugal.
  2. Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa , Lisboa, Portugal.

PMID: 25914689 PMCID: PMC4392319 DOI: 10.3389/fmicb.2015.00288

Abstract

Microbial extracellular polysaccharides (EPS), produced by a wide range of bacteria, are high molecular weight biopolymers, presenting an extreme diversity in terms of chemical structure and composition. They may be used in many applications, depending on their chemical and physical properties. A rather unexplored aspect is the presence of rare sugars in the composition of some EPS. Rare sugars, such as rhamnose or fucose, may provide EPS with additional biological properties compared to those composed of more common sugar monomers. This review gives a brief overview of these specific EPS and their producing bacteria. Cultivation conditions are summarized, demonstrating their impact on the EPS composition, together with downstream processing. Finally, their use in different areas, including cosmetics, food products, pharmaceuticals, and biomedical applications, are discussed.

Keywords: bacterial extracellular polysaccharides; fucose; glucuronic acid; rare-sugars; rhamnose

References

  1. Int J Biol Macromol. 2002 Apr 8;30(2):75-80 - PubMed
  2. J Ind Microbiol Biotechnol. 2012 Jun;39(6):823-34 - PubMed
  3. Biomed Pharmacother. 2003 Jul-Aug;57(5-6):187-94 - PubMed
  4. J Biotechnol. 2007 Feb 1;128(2):403-7 - PubMed
  5. Int J Biol Macromol. 2014 Nov;71:111-6 - PubMed
  6. J Biosci Bioeng. 2004;97(2):89-94 - PubMed
  7. Pathol Biol (Paris). 2009 Jun;57(4):336-41 - PubMed
  8. Biotechnol Lett. 2003 Jun;25(12 ):975-9 - PubMed
  9. Indian J Exp Biol. 2005 May;43(5):467-71 - PubMed
  10. Carbohydr Polym. 2013 Apr 2;93(2):670-8 - PubMed
  11. J Biosci Bioeng. 2006 Sep;102(3):150-6 - PubMed
  12. Carbohydr Polym. 2008 Sep 5;73(4):515-31 - PubMed
  13. J Ind Microbiol Biotechnol. 2006 May;33(5):359-67 - PubMed
  14. Carbohydr Polym. 2013 Feb 15;92(2):1262-79 - PubMed
  15. Biotechnol Appl Biochem. 2014 Jul-Aug;61(4):453-8 - PubMed
  16. Appl Biochem Biotechnol. 2010 Mar;160(6):1653-63 - PubMed
  17. Trends Biotechnol. 2011 Aug;29(8):388-98 - PubMed
  18. Appl Biochem Biotechnol. 2014 Jan;172(2):641-57 - PubMed
  19. Int J Biol Macromol. 2011 May 1;48(4):695-9 - PubMed
  20. Bioresour Technol. 2007 Mar;98 (4):792-7 - PubMed
  21. Environ Technol. 2010 Sep;31(10):1145-58 - PubMed
  22. Carbohydr Res. 1997 Jun 20;301(3-4):193-203 - PubMed
  23. J Eur Acad Dermatol Venereol. 2005 May;19(3):308-18 - PubMed
  24. Appl Microbiol Biotechnol. 2008 Jul;79(6):889-900 - PubMed
  25. J Basic Microbiol. 2007 Apr;47(2):103-17 - PubMed
  26. Carbohydr Polym. 2015 Jan 22;115:694-700 - PubMed
  27. Carbohydr Res. 2005 Feb 28;340(3):439-47 - PubMed
  28. Int J Pharm. 2014 May 15;466(1-2):328-40 - PubMed
  29. Bioresour Technol. 2012 Sep;119:148-56 - PubMed
  30. Microb Cell Fact. 2011 Nov 16;10:99 - PubMed
  31. Bioprocess Biosyst Eng. 2011 Jan;34(1):95-102 - PubMed
  32. Int J Biol Macromol. 2014 Apr;65:454-61 - PubMed
  33. Int J Biol Macromol. 2001 Jun 12;28(5):381-5 - PubMed
  34. Archaea. 2011;2011:693253 - PubMed
  35. Biomed Pharmacother. 2003 Jul-Aug;57(5-6):240-5 - PubMed
  36. Arch Gerontol Geriatr. 2009 Mar-Apr;48(2):151-4 - PubMed
  37. J Control Release. 2010 Jan 4;141(1):2-12 - PubMed
  38. Carbohydr Polym. 2013 Jan 30;92(1):516-22 - PubMed

Publication Types