Display options
Share it on

Front Plant Sci. 2015 Apr 10;6:213. doi: 10.3389/fpls.2015.00213. eCollection 2015.

Heat stress during seed filling interferes with sulfur restriction on grain composition and seed germination in oilseed rape (Brassica napus L.).

Frontiers in plant science

Sophie Brunel-Muguet, Philippe D'Hooghe, Marie-Paule Bataillé, Colette Larré, Tae-Hwan Kim, Jacques Trouverie, Jean-Christophe Avice, Philippe Etienne, Carolyne Dürr

Affiliations

  1. INRA, UMR INRA-UCBN 950 Ecophysiologie Végétale, Agronomie et Nutritions N.C.S. Caen, France.
  2. UCBN, UMR INRA-UCBN 950 Ecophysiologie Végétale, Agronomie et Nutritions N.C.S. Caen, France.
  3. INRA UR 1268 BIA, Rue de la Géraudière Nantes, France.
  4. UCBN, UMR INRA-UCBN 950 Ecophysiologie Végétale, Agronomie et Nutritions N.C.S. Caen, France ; Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture and Life Science, Chonnam National University Gwangju, South Korea.
  5. INRA, UMR 1345, Institute of Research on Horticulture and Seeds, SFR QUASAV Beaucouzé, France.

PMID: 25914702 PMCID: PMC4392296 DOI: 10.3389/fpls.2015.00213

Abstract

In coming decades, increasing temperatures are expected to impact crop yield and seed quality. To develop low input systems, the effects of temperature and sulfur (S) nutrition in oilseed rape, a high S demanding crop, need to be jointly considered. In this study, we investigated the effects of temperatures [High Temperature (HT), 33°C/day, 19°C/night vs. Control Temperature (Ctrl T), 20°C/day, 15°C/day] and S supply [High S (HS), 500 μm SO(2-) 4 vs. Low S (LS), 8.7 μM SO(2-) 4] during seed filling on (i) yield components [seed number, seed dry weight (SDW) and seed yield], (ii) grain composition [nitrogen (N) and S contents] and quality [fatty acid (FA) composition and seed storage protein (SSP) accumulation] and (iii) germination characteristics (pre-harvest sprouting, germination rates and abnormal seedlings). Abscisic acid (ABA), soluble sugar contents and seed conductivity were also measured. HT and LS decreased the number of seeds per plant. SDW was less affected due to compensatory effects since the number of seeds decreased under stress conditions. While LS had negative effects on seed composition by reducing the FA contents and increasing the ratio S-poor SSPs (12S globulins)/S-rich SSPs (2S albumins) ratio, HT had positive effects by increasing S and FA contents and decreasing the C18:2/C18:3 ratio and the 12S/2S protein ratio. Seeds produced under HT showed high pre-harvest sprouting rates along with decreased ABA contents and high rates of abnormal seedlings. HT and LS restriction significantly accelerated germination times. High conductivity, which indicates poor seed storage capacity, was higher in HT seeds. Consistently, the lower ratio of (raffinose + stachyose)/sucrose in HT seeds indicated low seed storage capacity. We demonstrated the effects of HT and LS on grain and on germination characteristics. These results suggest that hormonal changes might control several seed characteristics simultaneously.

Keywords: germination; grain quality; oilseed rape; sulfur; temperature

References

  1. Plant Physiol. 2002 Mar;128(3):1137-48 - PubMed
  2. J Exp Bot. 2001 Apr;52(357):701-8 - PubMed
  3. Theor Appl Genet. 1982 Dec;61(4):385-93 - PubMed
  4. Biomed Pharmacother. 2002 Oct;56(8):365-79 - PubMed
  5. Genomics. 2007 Mar;89(3):419-28 - PubMed
  6. Plant Physiol. 2005 May;138(1):304-18 - PubMed
  7. Trends Plant Sci. 2009 Jan;14(1):30-6 - PubMed
  8. Plant Physiol. 2000 Apr;122(4):1081-8 - PubMed
  9. J Chromatogr B Analyt Technol Biomed Life Sci. 2005 Apr 15;818(1):35-42 - PubMed
  10. Mol Cell Proteomics. 2014 May;13(5):1165-83 - PubMed
  11. Planta. 1981 Oct;153(1):64-74 - PubMed
  12. J Biol Chem. 1986 Aug 25;261(24):11124-30 - PubMed
  13. Cell Biosci. 2014 Jun 30;4:33 - PubMed
  14. Front Plant Sci. 2014 May 16;5:170 - PubMed
  15. Plant Physiol. 1984 Sep;76(1):155-60 - PubMed
  16. Ann Bot. 2014 May;113(6):921-9 - PubMed
  17. Nahrung. 1981;25(3):271-80 - PubMed
  18. Theor Appl Genet. 1995 Sep;91(4):627-31 - PubMed
  19. Annu Rev Plant Biol. 2012;63:507-33 - PubMed
  20. Plant Physiol. 1985 Jul;78(3):630-6 - PubMed
  21. FEBS Lett. 1991 Dec 16;295(1-3):207-10 - PubMed
  22. Plant Cell. 2002;14 Suppl:S185-205 - PubMed
  23. Nat Protoc. 2010 Jun;5(6):986-92 - PubMed
  24. Plant Cell. 2011 Jul;23(7):2568-80 - PubMed
  25. Curr Opin Plant Biol. 2002 Feb;5(1):26-32 - PubMed
  26. Annu Rev Plant Biol. 2008;59:387-415 - PubMed
  27. Plant J. 2013 Dec;76(6):982-96 - PubMed
  28. Metallomics. 2013 Sep;5(9):1316-25 - PubMed
  29. Front Plant Sci. 2014 Dec 17;5:695 - PubMed
  30. Rapid Commun Mass Spectrom. 2013 Dec 30;27(24):2737-44 - PubMed
  31. J Exp Bot. 2010 Oct;61(15):4313-24 - PubMed

Publication Types