Display options
Share it on

Front Genet. 2015 Apr 10;6:124. doi: 10.3389/fgene.2015.00124. eCollection 2015.

The evolutionary dynamics of major regulators for sexual development among Hymenoptera species.

Frontiers in genetics

Matthias Biewer, Francisca Schlesinger, Martin Hasselmann

Affiliations

  1. Population Genetics of Social Insects, Institute of Genetics, University of Cologne Cologne, Germany ; Livestock Population Genomics Group, Institute of Animal Science, University of Hohenheim Stuttgart, Germany.
  2. Population Genetics of Social Insects, Institute of Genetics, University of Cologne Cologne, Germany ; Institute of Bee Research Hohen Neuendorf, Germany.

PMID: 25914717 PMCID: PMC4392698 DOI: 10.3389/fgene.2015.00124

Abstract

All hymenopteran species, such as bees, wasps and ants, are characterized by the common principle of haplodiploid sex determination in which haploid males arise from unfertilized eggs and females from fertilized eggs. The underlying molecular mechanism has been studied in detail in the western honey bee Apis mellifera, in which the gene complementary sex determiner (csd) acts as primary signal of the sex determining pathway, initiating female development by csd-heterozygotes. Csd arose from gene duplication of the feminizer (fem) gene, a transformer (tra) ortholog, and mediates in conjunction with transformer2 (tra2) sex-specific splicing of fem. Comparative molecular analyses identified fem/tra and its downstream target doublesex (dsx) as conserved unit within the sex determining pathway of holometabolous insects. In this study, we aim to examine evolutionary differences among these key regulators. Our main hypothesis is that sex determining key regulators in Hymenoptera species show signs of coevolution within single phylogenetic lineages. We take advantage of several newly sequenced genomes of bee species to test this hypothesis using bioinformatic approaches. We found evidences that duplications of fem are restricted to certain bee lineages and notable amino acid differences of tra2 between Apis and non-Apis species propose structural changes in Tra2 protein affecting co-regulatory function on target genes. These findings may help to gain deeper insights into the ancestral mode of hymenopteran sex determination and support the common view of the remarkable evolutionary flexibility in this regulatory pathway.

Keywords: adaptive evolution; gene duplications; pathway evolution; regulatory changes; sex determination

References

  1. Proc Biol Sci. 2013 Mar 06;280(1758):20122968 - PubMed
  2. Cell. 1989 Mar 24;56(6):997-1010 - PubMed
  3. Annu Rev Genet. 2002;36:389-410 - PubMed
  4. Nat Commun. 2012 Jun 12;3:895 - PubMed
  5. Proc Natl Acad Sci U S A. 2007 May 15;104 Suppl 1:8590-6 - PubMed
  6. Nature. 2010 Dec 16;468(7326):911-20 - PubMed
  7. Nature. 2008 Jul 24;454(7203):519-22 - PubMed
  8. BMC Evol Biol. 2010 May 13;10:140 - PubMed
  9. Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):4888-93 - PubMed
  10. J Evol Biol. 2006 Sep;19(5):1475-85 - PubMed
  11. Genetics. 2012 Nov;192(3):1015-26 - PubMed
  12. Proc Biol Sci. 2013 Jan 30;280(1755):20122686 - PubMed
  13. Science. 2010 Apr 30;328(5978):620-3 - PubMed
  14. Evol Dev. 2008 May-Jun;10(3):360-74 - PubMed
  15. Genetics. 2010 Jan;184(1):155-70 - PubMed
  16. Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13378-83 - PubMed
  17. Genetics. 2005 May;170(1):433-46 - PubMed
  18. Sex Dev. 2014;8(1-3):20-8 - PubMed
  19. EMBO J. 1986 Dec 20;5(13):3607-13 - PubMed
  20. Proc Natl Acad Sci U S A. 2004 Jun 15;101(24):9033-8 - PubMed
  21. Mol Biol Evol. 2013 Dec;30(12):2725-9 - PubMed
  22. Science. 2002 Aug 9;297(5583):1007-13 - PubMed
  23. Mol Cell Biol. 1997 May;17(5):2908-19 - PubMed
  24. Bioessays. 1995 Jan;17(1):71-7 - PubMed
  25. Int J Dev Biol. 2009;53(1):109-20 - PubMed
  26. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 - PubMed
  27. Genome Biol. 2015 Apr 24;16:76 - PubMed
  28. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8 - PubMed
  29. Mol Biol Evol. 2014 Feb;31(2):272-87 - PubMed
  30. PLoS Biol. 2009 Oct;7(10):e1000222 - PubMed
  31. Genome Inform. 2009 Oct;23(1):205-11 - PubMed
  32. Sex Dev. 2014;8(1-3):74-82 - PubMed
  33. Dev Genes Evol. 2007 Oct;217(10):725-31 - PubMed
  34. Nat Rev Genet. 2003 Jan;4(1):39-49 - PubMed
  35. Nat Rev Genet. 2010 Feb;11(2):97-108 - PubMed
  36. Bioinformatics. 1998;14(9):755-63 - PubMed
  37. PLoS One. 2013 May 22;8(5):e63618 - PubMed
  38. Science. 2002 Jul 12;297(5579):249-52 - PubMed
  39. Nature. 1989 Aug 17;340(6234):521-4 - PubMed
  40. Genome Res. 2006 Nov;16(11):1339-44 - PubMed
  41. Cell. 2011 Mar 18;144(6):970-85 - PubMed
  42. Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8888-93 - PubMed
  43. Nucleic Acids Res. 2012 Jan;40(Database issue):D306-12 - PubMed
  44. Science. 2007 Jan 12;315(5809):206 - PubMed
  45. Bioinformatics. 1998;14(9):817-8 - PubMed
  46. Cell. 2003 Aug 22;114(4):419-29 - PubMed
  47. PLoS One. 2014 Apr 17;9(4):e91883 - PubMed
  48. Annu Rev Genet. 1996;30:637-702 - PubMed
  49. Science. 2010 Jan 15;327(5963):343-8 - PubMed
  50. J Hered. 2010 Mar-Apr;101 Suppl 1:S118-26 - PubMed
  51. Nucleic Acids Res. 2011 Jan;39(Database issue):D225-9 - PubMed
  52. Development. 2002 Aug;129(15):3715-25 - PubMed
  53. Phys Life Rev. 2009 Mar;6(1):23-52 - PubMed
  54. Trends Genet. 2012 Jan;28(1):14-21 - PubMed
  55. Evol Dev. 2001 Mar-Apr;3(2):109-19 - PubMed
  56. Genetics. 2007 Nov;177(3):1733-41 - PubMed

Publication Types