Display options
Share it on

Radiol Oncol. 2015 Mar 03;49(1):17-25. doi: 10.2478/raon-2014-0030. eCollection 2015 Mar.

Dynamic contrast-enhanced computed tomography to assess early activity of cetuximab in squamous cell carcinoma of the head and neck.

Radiology and oncology

Sandra Schmitz, Denis Rommel, Nicolas Michoux, Renaud Lhommel, François-Xavier Hanin, Thierry Duprez, Jean-Pascal Machiels

Affiliations

  1. Department of Medical Oncology and Head and Neck Surgery, Cliniques Universitaires Saint-Luc and Institut de Recherche Clinique et Expérimentale (Pole MIRO), Université Catholique de Louvain, Brussels, Belgium.
  2. Department of Medical Imaging and Radiology, Cliniques Universitaires Saint-Luc and Institut de Recherche Clinique et Expérimentale (Pole IMAG), Université Catholique de Louvain, Brussels, Belgium.
  3. Department of Nuclear Medicine, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium.

PMID: 25810697 PMCID: PMC4362602 DOI: 10.2478/raon-2014-0030

Abstract

BACKGROUND: Cetuximab, a monoclonal antibody targeting the Epidermal Growth Factor Receptor (EGFR), has demonstrated activity in various tumor types. Using dynamic contrast-enhanced computed tomography (DCE-CT), we investigated the early activity of cetuximab monotherapy in previously untreated patients with squamous cell carcinoma of the head and neck (SCCHN).

METHODS: Treatment-naïve patients with SCCHN received cetuximab for 2 weeks before curative surgery. Treatment activity was evaluated by DCE-CT at baseline and before surgery. Tumor vascular and interstitial characteristics were evaluated using the Brix two-compartment kinetic model. Modifications of the perfusion parameters (blood flow Fp, extravascular space ve, vascular space vp, and transfer constant PS) were assessed between both time points. DCE data were compared to FDG-PET and histopathological examination obtained simultaneously. Plasmatic vascular markers were investigated at different time points.

RESULTS: Fourteen patients had evaluable DCE-CT parameters at both time points. A significant increase in the extravascular extracellular space ve accessible to the tracer was observed but no significant differences were found for the other kinetic parameters (Fp, vp or PS). Significant correlations were found between DCE parameters and the other two modalities. Plasmatic VEGF, PDGF-BB and IL-8 decreased as early as 2 hours after cetuximab infusion.

CONCLUSIONS: Early activity of cetuximab on tumor interstitial characteristics was detected by DCE-CT. Modifications of plasmatic vascular markers are not sufficient to confirm anti-angiogenic cetuximab activity in vivo. Further investigation is warranted to determine to what extent DCE-CT parameters are modified and to evaluate whether they are able to predict treatment outcome.

Keywords: DCE-CT; cetuximab; head and neck cancer; perfusion

References

  1. AJNR Am J Neuroradiol. 2006 Jan;27(1):101-6 - PubMed
  2. Br J Radiol. 2002 Feb;75(890):193-4; author reply 194-5 - PubMed
  3. Acad Radiol. 2007 Mar;14(3):312-8 - PubMed
  4. Ann Oncol. 2013 Sep;24(9):2261-6 - PubMed
  5. Br J Radiol. 2003;76 Spec No 1:S36-42 - PubMed
  6. Clin Cancer Res. 2003 Oct 1;9(12):4514-21 - PubMed
  7. IEEE Trans Image Process. 1998;7(1):27-41 - PubMed
  8. Cancer Res. 1999 Apr 15;59(8):1935-40 - PubMed
  9. AJNR Am J Neuroradiol. 2007 Feb;28(2):328-34 - PubMed
  10. Eur J Cancer. 1999 Dec;35(13):1773-82 - PubMed
  11. Eur Radiol. 2013 Jan;23 (1):163-73 - PubMed
  12. Clin Cancer Res. 2007 Nov 15;13(22 Pt 1):6555-60 - PubMed
  13. Radiology. 2009 May;251(2):422-8 - PubMed
  14. J Comput Assist Tomogr. 2002 Mar-Apr;26(2):185-90 - PubMed
  15. Acta Radiol. 2010 Sep;51(7):793-9 - PubMed
  16. Cancer Res. 2009 Aug 1;69(15):6347-54 - PubMed
  17. AJNR Am J Neuroradiol. 2005 May;26(5):1178-85 - PubMed
  18. Oncogene. 2005 Jun 23;24(27):4433-41 - PubMed
  19. J Clin Oncol. 2006 Jun 10;24(17):2666-72 - PubMed
  20. Mol Cancer Ther. 2008 Sep;7(9):3064-70 - PubMed
  21. AJNR Am J Neuroradiol. 2010 Mar;31(3):570-5 - PubMed
  22. Clin Cancer Res. 2012 Apr 15;18(8):2278-89 - PubMed
  23. Invest Radiol. 2007 Sep;42(9):629-35 - PubMed
  24. Microvasc Res. 2012 Mar;83(2):131-7 - PubMed
  25. Int J Radiat Oncol Biol Phys. 2003 Dec 1;57(5):1351-6 - PubMed
  26. Lung Cancer. 2007 Jan;55(1):79-87 - PubMed
  27. Lancet Oncol. 2010 Jan;11(1):21-8 - PubMed
  28. Magn Reson Med. 2010 Mar;63(3):691-700 - PubMed
  29. Expert Rev Anticancer Ther. 2010 Sep;10(9):1471-84 - PubMed
  30. Cancer Cell. 2005 Apr;7(4):301-11 - PubMed
  31. J Cell Physiol. 2008 Mar;214(3):559-67 - PubMed
  32. Cancer Res. 2002 Dec 15;62(24):7350-6 - PubMed
  33. AJNR Am J Neuroradiol. 2005 Apr;26(4):777-83 - PubMed
  34. Cancer Immunol Immunother. 2009 Nov;58(11):1853-64 - PubMed
  35. N Engl J Med. 2008 Sep 11;359(11):1116-27 - PubMed
  36. J Clin Oncol. 2007 Jun 1;25(16):2171-7 - PubMed
  37. N Engl J Med. 2006 Feb 9;354(6):567-78 - PubMed
  38. PLoS One. 2009 Aug 06;4(8):e6539 - PubMed
  39. Cancer Res. 2001 Jul 1;61(13):5090-101 - PubMed

Publication Types