Display options
Share it on

EJNMMI Res. 2015 Mar 28;5:20. doi: 10.1186/s13550-015-0090-6. eCollection 2015.

FIBT versus florbetaben and PiB: a preclinical comparison study with amyloid-PET in transgenic mice.

EJNMMI research

Behrooz H Yousefi, Boris von Reutern, Daniela Scherübl, André Manook, Markus Schwaiger, Timo Grimmer, Gjermund Henriksen, Stefan Förster, Alexander Drzezga, Hans-Jürgen Wester

Affiliations

  1. Department of Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meißner-Str. 3, 85748 Garching, Germany.
  2. Department of Nuclear Medicine, Technische Universität München, Ismaninger Straße 22, 81675 Munich, Germany ; Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany.
  3. Department of Nuclear Medicine, Technische Universität München, Ismaninger Straße 22, 81675 Munich, Germany.
  4. Department of Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meißner-Str. 3, 85748 Garching, Germany ; Department of Nuclear Medicine, Technische Universität München, Ismaninger Straße 22, 81675 Munich, Germany.
  5. Department of Psychiatry and Psychotherapy, Technische Universität München, Ismaninger Straße 22, 81675 Munich, Germany.
  6. Department of Nuclear Medicine, Technische Universität München, Ismaninger Straße 22, 81675 Munich, Germany ; Department of Nuclear Medicine, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany.

PMID: 25918674 PMCID: PMC4402683 DOI: 10.1186/s13550-015-0090-6

Abstract

BACKGROUND: Over the last decade, an increasing number of studies have been published on the use of amyloid-β (Aβ) PET imaging with different (18)F-radiopharmaceuticals for clinical characterization of Alzheimer's disease (AD) in different stages. However, distinct study cohorts and different quantification techniques allow only for an indirect comparison between the different tracers. Thus, the aim of this study was the direct intra-individual in vivo comparison of different Aβ-targeted radiopharmaceuticals for PET imaging, including the newly developed agent [(18)F]FIBT.

METHODS: A small group of four animals of a well-characterized APP/PS1 transgenic (tg) mouse model of AD and gender-matched control (ctl) animals underwent a sequential and standardized PET imaging regimen for direct comparison of [(18)F]FIBT, [(18)F]florbetaben, and [(11)C]PiB. The quantitative PET imaging data were cross-validated with the cerebral Aβ plaque load as quantified ex vivo on histological sections.

RESULTS: We found that FIBT (2-(p-methylaminophenyl)-7-(2-[(18)F]fluoroethoxy)imidazo[2,1-b]benzothiazole) compares favorably to florbetaben as a high-contrasting PET radiopharmaceutical for imaging Aβ pathology. The excellent pharmacokinetics of FIBT in combination with its high-binding affinity towards Aβ resulted in feasible high-contrast imaging of Aβ with high global cortex to cerebellum standard uptake value ratio (SUVR) in 24-month-old tg mice (tg 1.68 ± 0.15 vs. ctl 0.95 ± 0.02). The SUVRs in transgenic versus control animals (SUVRtg/SUVRctl) for FIBT (1.78 ± 0.16) were similar to the ratios as observed in humans (SUVRAD/SUVRctl) for the established gold standard Pittsburgh compound B (PiB) (1.65 ± 0.41).

CONCLUSIONS: This head-to-head PET tracer comparison study in mice indicated the good imaging properties of [(18)F]FIBT, such as high initial brain uptake, fast clearance of the brain, and high binding affinity towards Aβ as directly compared to the established amyloid tracers. Moreover, the preclinical study design is recommendable for reliable assessment and comparison of novel radiopharmaceuticals.

Keywords: APP/PS1 transgenic mouse animal model of AD; Alzheimer’s disease; Autoradiography; FIBT; Florbetaben; In vivo imaging; In vivo radiotracers ranking; PiB; Small-animal PET; β-amyloid

References

  1. J Nucl Med. 2009 Aug;50(8):1251-9 - PubMed
  2. Nucl Med Biol. 2011 Jan;38(1):121-7 - PubMed
  3. J Neurosci. 2007 Oct 10;27(41):10957-68 - PubMed
  4. J Nucl Med. 2009 Nov;50(11):1887-94 - PubMed
  5. Bioorg Med Chem Lett. 2009 Feb 1;19(3):602-5 - PubMed
  6. Eur J Nucl Med Mol Imaging. 2012 Nov;39(11):1784-95 - PubMed
  7. J Nucl Med. 2012 Nov;53(11):1794-801 - PubMed
  8. Brain. 2012 Jul;135(Pt 7):2126-39 - PubMed
  9. JAMA. 2011 May 11;305(18):1857; author reply 1857-8 - PubMed
  10. Lancet Neurol. 2011 May;10 (5):424-35 - PubMed
  11. Appl Radiat Isot. 2010 Dec;68(12 ):2293-7 - PubMed
  12. Science. 1992 Apr 10;256(5054):184-5 - PubMed
  13. Science. 2002 Jul 19;297(5580):353-6 - PubMed
  14. Expert Rev Clin Immunol. 2014 Mar;10(3):405-19 - PubMed
  15. Chang Gung Med J. 2012 May-Jun;35(3):211-8 - PubMed
  16. Neuroimage. 2014 Jan 1;84:843-53 - PubMed
  17. Biochim Biophys Acta. 2012 Mar;1822(3):370-9 - PubMed
  18. Biol Psychiatry. 2012 May 1;71(9):792-7 - PubMed
  19. ACS Chem Neurosci. 2015 Mar 18;6(3):428-37 - PubMed
  20. J Nucl Med. 2009 May;50(5):818-22 - PubMed
  21. Nat Rev Neurosci. 2008 Jul;9(7):532-44 - PubMed
  22. Eur J Nucl Med Mol Imaging. 2008 Mar;35 Suppl 1:S75-81 - PubMed
  23. Int J Alzheimers Dis. 2012;2012:369808 - PubMed
  24. Curr Opin Neurol. 2008 Dec;21(6):683-7 - PubMed
  25. Bioorg Med Chem Lett. 2011 Nov 1;21(21):6519-22 - PubMed
  26. Med Clin North Am. 2013 May;97(3):377-98 - PubMed
  27. J Med Chem. 2011 Feb 24;54(4):949-56 - PubMed
  28. J Nucl Med. 2011 Aug;52(8):1210-7 - PubMed
  29. Semin Nucl Med. 2011 Jul;41(4):300-4 - PubMed
  30. Int J Geriatr Psychiatry. 2011 Oct;26(10 ):991-9 - PubMed
  31. Curr Pharm Des. 2004;10(13):1469-92 - PubMed
  32. Mol Imaging Biol. 2003 Nov-Dec;5(6):363-75 - PubMed
  33. Nucl Med Biol. 2012 May;39(4):484-501 - PubMed
  34. Arch Neurol. 2011 Nov;68(11):1404-11 - PubMed
  35. Bioorg Med Chem Lett. 2012 Jul 1;22(13):4332-7 - PubMed
  36. J Nucl Med. 2013 Aug;54(8):1434-41 - PubMed
  37. Neuron. 2013 Dec 18;80(6):1347-58 - PubMed
  38. PLoS One. 2009 Nov 20;4(11):e7931 - PubMed
  39. Mol Imaging Biol. 2003 Nov-Dec;5(6):376-89 - PubMed
  40. Eur J Nucl Med Mol Imaging. 2014 Jul;41(7):1398-407 - PubMed
  41. J Nucl Med. 2009 Feb;50(2):309-15 - PubMed
  42. Eur J Nucl Med Mol Imaging. 2012 Dec;39(12 ):1927-36 - PubMed
  43. J Med Chem. 2007 Mar 22;50(6):1087-9 - PubMed
  44. Lancet Neurol. 2008 Feb;7(2):129-35 - PubMed
  45. J Nucl Med. 2010 Jun;51(6):913-20 - PubMed
  46. JAMA. 2011 Jan 19;305(3):275-83 - PubMed
  47. Mol Imaging Biol. 2013 Oct;15(5):576-84 - PubMed
  48. J Nucl Med. 2012 Mar;53(3):415-24 - PubMed
  49. IDrugs. 2010 Dec;13(12 ):890-9 - PubMed
  50. Biol Psychiatry. 2010 Nov 15;68(10 ):879-84 - PubMed
  51. ACS Med Chem Lett. 2011 Jul 19;2(9):673-7 - PubMed
  52. J Nucl Med. 2013 Jun;54(6):880-6 - PubMed
  53. Nucl Med Biol. 2010 May;37(4):497-508 - PubMed
  54. J Nucl Med. 2013 Jul;54(7):1127-34 - PubMed

Publication Types