Display options
Share it on

Clin Epigenetics. 2014 Nov 14;6(1):26. doi: 10.1186/1868-7083-6-26. eCollection 2014.

Restitution of gene expression and histone acetylation signatures altered by hepatitis B virus through antiviral microRNA-like molecules in nontransformed murine hepatocytes.

Clinical epigenetics

Andreas Cw Jenke, Kai O Hensel, Andreas Klein, Lisa Willuhn, Susanna Prax, Patrick P Weil, Theodor Winkler, Timo Deba, Valerie Orth, Armin Baiker, Stefan Wirth, Jan Postberg

Affiliations

  1. Department of Paediatrics, HELIOS Medical Centre Wuppertal, Centre for Clinical and Translational Research (CCTR), Faculty of Health, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Heusnerstr. 40, 42283 Wuppertal, Germany.
  2. Bavarian Health and Food Safety Authority, Veterinaerstrasse 2, D-85764 Oberschleißheim, Germany.

PMID: 25859285 PMCID: PMC4391130 DOI: 10.1186/1868-7083-6-26

Abstract

BACKGROUND: Virus-host interactions result in altered gene expression profiles in host cell nuclei and enable virus particle production, thus obligatorily involving changes in their epigenomes. Neither such epigenome changes nor their response to antiviral treatment have been extensively studied to date, although viral infections are known to contribute to the long-term development of severe secondary diseases, for example, hepatocellular carcinoma. This may be causally linked to virus-induced persistent plastic chromatin deformations.

RESULTS: We studied whether impaired hepatitis B virus (HBV) replication can lead to the restitution of epigenome signatures hypothesizing that hepatocytes alternatively could adopt a 'memory' state of the infection; that is, the chromatin could persist in a HBV-induced configuration potentially inheritable between dividing hepatocytes. We therefore determined epigenomic signatures and gene expression changes altered by HBV and the effects of suppressed HBV replication in nontransformed hepatocytes of newborn mice. Further we investigated differential histone acetyltransferase and histone deacetylase activities in HBV-negative and HBVpositive hepatocytes, as well as the effects of HBV suppression on gene expression and the chromatin landscape. We show that the expression of several genes and the chromatin landscape become altered upon HBV infection, including global hypoacetylation of H2A.Z and H3K9. Reporter assays monitoring the activities of histone acetyltransferases or histone deacetylases, respectively, suggest that hypoacetylation most probably depends on elevated sirtuin deacetylase activity, but not on class I/II histone deacetylases. Using Micrococcus nuclease to study the chromatin accessibility in met murine-D3 and hepatitis B virus met murine hepatocytes, we demonstrate that the observed differences in H2A.Z/H3K9 acetylation lead to global chromatin structure changes. At all selected sites examined by chromatin immunoprecipitation and quantitative real-time PCR, these effects can be partly restituted via the nucleoside analog reverse transcriptase inhibitor 3TC or using anti-HBV microRNA-like molecules.

CONCLUSIONS: Increased sirtuin activity might lead to global histone hypoacetylation signatures, which could contribute to the HBV-induced pathomechanism in nontransformed hepatocytes. Using several techniques to suppress HBV replication, we observed restituted gene expression and chromatin signature patterns reminiscent of noninfected hepatocytes. Importantly, ectopic expression of antiviral short-hairpin RNA, but not microRNA-like molecules, provoked intolerable off-target effects on the gene expression level.

Keywords: CpG signaling; HBV; HCC; histone deacetylation; non-coding RNA; sirtuins

References

  1. Cancer Res. 2000 Dec 1;60(23):6581-4 - PubMed
  2. Gastroenterology. 2007 Apr;132(4):1476-94 - PubMed
  3. FASEB J. 2014 Mar;28(3):1454-63 - PubMed
  4. Gut. 2001 Mar;48(3):372-7 - PubMed
  5. J Virol. 2002 Jun;76(11):5646-53 - PubMed
  6. Eur J Cancer. 2008 Mar;44(4):600-8 - PubMed
  7. Antivir Ther. 2007;12(6):865-76 - PubMed
  8. Cell. 2007 Feb 23;128(4):683-92 - PubMed
  9. Hepatology. 1999 Nov;30(5):1179-86 - PubMed
  10. Methods. 2001 Dec;25(4):402-8 - PubMed
  11. Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):19975-9 - PubMed
  12. Tumour Biol. 2014 Mar;35(3):2795-802 - PubMed
  13. BMC Cancer. 2002 Nov 15;2:29 - PubMed
  14. Mol Cancer. 2012 Mar 08;11:9 - PubMed
  15. Antimicrob Agents Chemother. 2008 Jul;52(7):2355-9 - PubMed
  16. Mutat Res. 2011 May-Jun;727(3):55-61 - PubMed
  17. World J Gastroenterol. 2007 Jan 7;13(1):74-81 - PubMed
  18. Nat Genet. 2005 Nov;37(11):1289-95 - PubMed
  19. Clin Cancer Res. 2004 Nov 15;10(22):7484-9 - PubMed
  20. Gastroenterology. 2006 Mar;130(3):823-37 - PubMed
  21. Liver Cancer. 2012 Sep;1(2):83-93 - PubMed
  22. Cell Growth Differ. 2002 Mar;13(3):115-22 - PubMed
  23. Antivir Ther. 2010;15 Suppl 3:3-14 - PubMed
  24. J Virol. 2014 Mar;88(5):2442-51 - PubMed
  25. Cancer Res. 2009 Feb 15;69(4):1358-67 - PubMed
  26. Cancer Lett. 2003 Feb 20;190(2):213-9 - PubMed
  27. World J Gastroenterol. 2008 Mar 21;14(11):1741-8 - PubMed
  28. J Gastroenterol. 2013 Sep;48(9):1069-80 - PubMed
  29. Nucleic Acids Res. 1999 Jan 15;27(2):426-8 - PubMed
  30. Oncogene. 2001 Jun 21;20(28):3674-82 - PubMed
  31. Clin Cancer Res. 2002 Apr;8(4):1087-92 - PubMed
  32. PLoS One. 2010 Jan 26;5(1):e8888 - PubMed
  33. PLoS One. 2013;8(2):e55636 - PubMed
  34. Cold Spring Harb Perspect Biol. 2009 Dec;1(6):a003129 - PubMed
  35. CSH Protoc. 2007 Jun 01;2007:pdb.prot4767 - PubMed
  36. Chromosoma. 2011 Jun;120(3):275-85 - PubMed
  37. Nature. 2006 May 25;441(7092):537-41 - PubMed
  38. EMBO J. 1997 Feb 3;16(3):495-503 - PubMed
  39. Nucleic Acids Res. 2011 Jan;39(Database issue):D152-7 - PubMed
  40. Biochim Biophys Acta. 2013 Mar-Apr;1819(3-4):332-42 - PubMed
  41. Nat Struct Mol Biol. 2013 Mar;20(3):282-9 - PubMed

Publication Types