Display options
Share it on

Front Cell Neurosci. 2015 Apr 20;9:152. doi: 10.3389/fncel.2015.00152. eCollection 2015.

Reconciling the discrepancies on the involvement of large-conductance Ca(2+)-activated K channels in glioblastoma cell migration.

Frontiers in cellular neuroscience

Luigi Catacuzzeno, Martino Caramia, Luigi Sforna, Silvia Belia, Luca Guglielmi, Maria Cristina D'Adamo, Mauro Pessia, Fabio Franciolini

Affiliations

  1. Dipartimento di Chimica, Biologia e Biotecnologie, Universita' di Perugia Perugia, Italy.
  2. Dipartimento di Medicina Sperimentale, Scuola di Medicina e Chirurgia, Universita' di Perugia Perugia, Italy.

PMID: 25941475 PMCID: PMC4403502 DOI: 10.3389/fncel.2015.00152

Abstract

Glioblastoma (GBM) is the most common and aggressive primary brain tumor, and is notable for spreading so effectively through the brain parenchyma to make complete surgical resection virtually impossible, and prospect of life dismal. Several ion channels have been involved in GBM migration and invasion, due to their critical role in supporting volume changes and Ca(2+) influx occuring during the process. The large-conductance, Ca(2+)-activated K (BK) channels, markedly overexpressed in biopsies of patients with GBMs and in GBM cell lines, have attracted much interest and have been suggested to play a central role in cell migration and invasion as candidate channels for providing the ion efflux and consequent water extrusion that allow cell shrinkage during migration. Available experimental data on the role of BK channel in migration and invasion are not consistent though. While BK channels block typically resulted in inhibition of cell migration or in no effect, their activation would either enhance or inhibit the process. This short review reexamines the relevant available data on the topic, and presents a unifying paradigm capable of reconciling present discrepancies. According to this paradigm, BK channels would not contribute to migration under conditions where the [Ca(2+)] i is too low for their activation. They will instead positively contribute to migration for intermediate [Ca(2+)] i , insufficient as such to activate BK channels, but capable of predisposing them to cyclic activation following oscillatory [Ca(2+)] i increases. Finally, steadily active BK channels because of prolonged high [Ca(2+)] i would inhibit migration as their steady activity would be unsuitable to match the cyclic cell volume changes needed for proper cell migration.

Keywords: BK channels; KCa1.1; glioblastoma multiforme (GBM); invasion; migration

References

  1. Cell Calcium. 2014 Jul;56(1):14-24 - PubMed
  2. Cell Physiol Biochem. 2006;18(1-3):47-56 - PubMed
  3. Cancer Res. 2007 Oct 1;67(19):9463-71 - PubMed
  4. J Biol Chem. 2002 Jul 19;277(29):26364-71 - PubMed
  5. Eur J Pharmacol. 1994 Jan 4;251(1):53-9 - PubMed
  6. Exp Cell Res. 1995 Aug;219(2):364-71 - PubMed
  7. Cell Death Dis. 2013 Aug 15;4:e773 - PubMed
  8. Glia. 2002 Jun;38(4):281-91 - PubMed
  9. PLoS One. 2012;7(10):e47825 - PubMed
  10. J Membr Biol. 2000 Jul 1;176(1):31-40 - PubMed
  11. Biochim Biophys Acta. 2000 Dec 20;1498(2-3):273-80 - PubMed
  12. Neuron. 2001 Mar;29(3):593-601 - PubMed
  13. J Neurosci. 2011 Nov 23;31(47):17250-9 - PubMed
  14. J Biomed Sci. 2009 Sep 24;16:90 - PubMed
  15. J Membr Biol. 2014 Jan;247(1):45-55 - PubMed
  16. Glia. 2006 Aug 15;54(3):223-33 - PubMed
  17. J Cell Physiol. 2011 Jul;226(7):1926-33 - PubMed
  18. Am J Physiol Cell Physiol. 2011 Sep;301(3):C541-9 - PubMed
  19. Radiother Oncol. 2011 Oct;101(1):122-6 - PubMed
  20. J Cell Biol. 1993 Feb;120(4):1003-10 - PubMed
  21. Am J Physiol Cell Physiol. 2009 Jul;297(1):C102-10 - PubMed
  22. Nat Med. 2002 Sep;8(9):971-8 - PubMed
  23. J Neurosci. 1999 Jul 15;19(14):5942-54 - PubMed
  24. Pflugers Arch. 2003 May;446(2):248-55 - PubMed
  25. Arch Biochem Biophys. 2002 Oct 1;406(1):55-64 - PubMed
  26. Cell Mol Life Sci. 2007 Feb;64(4):458-78 - PubMed
  27. J Gen Physiol. 2014 Nov;144(5):415-40 - PubMed
  28. Front Cell Neurosci. 2015 Jan 15;8:467 - PubMed
  29. Philos Trans R Soc Lond B Biol Sci. 2014 Feb 03;369(1638):20130095 - PubMed
  30. Exp Mol Med. 2011 Jan 31;43(1):24-34 - PubMed
  31. Biochim Biophys Acta. 2013 Dec;1836(2):236-44 - PubMed
  32. J Neurosci. 2002 Mar 1;22(5):1840-9 - PubMed
  33. J Theor Biol. 2012 Sep 21;309:103-12 - PubMed
  34. Curr Opin Cell Biol. 2012 Apr;24(2):254-61 - PubMed
  35. Annu Rev Biomed Eng. 2005;7:105-50 - PubMed
  36. J Signal Transduct. 2012;2012:421564 - PubMed
  37. Nat Rev Genet. 2001 Feb;2(2):120-9 - PubMed
  38. Am J Physiol Cell Physiol. 2010 Jul;299(1):C175-84 - PubMed
  39. Pflugers Arch. 1999 Sep;438(4):437-44 - PubMed
  40. Biophys J. 1997 Sep;73(3):1355-63 - PubMed

Publication Types