Display options
Share it on

Skelet Muscle. 2015 Feb 22;5:6. doi: 10.1186/s13395-015-0029-7. eCollection 2015.

C-terminal residues of skeletal muscle calsequestrin are essential for calcium binding and for skeletal ryanodine receptor inhibition.

Skeletal muscle

Nicole A Beard, Angela F Dulhunty

Affiliations

  1. John Curtin School of Medical Research, Australian National University, Garran Road, Canberra, ACT 2601 Australia ; Discipline of Biomedical Sciences, Centre for Research in Therapeutic Solutions, Faculty of Education Science, Technology and Maths, University of Canberra, Kirinari Street, Bruce, ACT 2601 Australia.
  2. John Curtin School of Medical Research, Australian National University, Garran Road, Canberra, ACT 2601 Australia.

PMID: 25861445 PMCID: PMC4389316 DOI: 10.1186/s13395-015-0029-7

Abstract

BACKGROUND: Skeletal muscle function depends on calcium signaling proteins in the sarcoplasmic reticulum (SR), including the calcium-binding protein calsequestrin (CSQ), the ryanodine receptor (RyR) calcium release channel, and skeletal triadin 95 kDa (trisk95) and junctin, proteins that bind to calsequestrin type 1 (CSQ1) and ryanodine receptor type 1 (RyR1). CSQ1 inhibits RyR1 and communicates store calcium load to RyR1 channels via trisk95 and/or junctin.

METHODS: In this manuscript, we test predictions that CSQ1's acidic C-terminus contains binding sites for trisk95 and junctin, the major calcium binding domain, and that it determines CSQ1's ability to regulate RyR1 activity.

RESULTS: Progressive alanine substitution of C-terminal acidic residues of CSQ1 caused a parallel reduction in the calcium binding capacity but did not significantly alter CSQ1's association with trisk95/junctin or influence its inhibition of RyR1 activity. Deletion of the final seven residues in the C-terminus significantly hampered calcium binding, significantly reduced CSQ's association with trisk95/junctin and decreased its inhibition of RyR1. Deletion of the full C-terminus further reduced calcium binding to CSQ1 altered its association with trisk95 and junctin and abolished its inhibition of RyR1.

CONCLUSIONS: The correlation between the number of residues mutated/deleted and binding of calcium, trisk95, and junctin suggests that binding of each depends on diffuse ionic interactions with several C-terminal residues and that these interactions may be required for CSQ1 to maintain normal muscle function.

Keywords: Ca2+ binding protein; Calsequestrin; Ryanodine receptor; Sarcoplasmic reticulum; Skeletal muscle

References

  1. Am J Hum Genet. 2001 Dec;69(6):1378-84 - PubMed
  2. Nat Rev Cardiol. 2012 Oct;9(10):561-75 - PubMed
  3. J Biol Chem. 1988 Jan 25;263(3):1376-81 - PubMed
  4. Nat Struct Biol. 1998 Jun;5(6):476-83 - PubMed
  5. J Cell Biol. 1987 Jul;105(1):49-56 - PubMed
  6. J Physiol. 2009 Jul 1;587(Pt 13):3101-11 - PubMed
  7. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
  8. Cell Mol Life Sci. 2013 Aug;70(16):2935-45 - PubMed
  9. J Biol Chem. 1984 May 25;259(10):6248-52 - PubMed
  10. J Cell Biol. 1984 Sep;99(3):875-85 - PubMed
  11. J Biol Chem. 1997 Mar 14;272(11):7360-7 - PubMed
  12. Int J Biochem Cell Biol. 2009 Nov;41(11):2214-24 - PubMed
  13. Cell Calcium. 2009 May;45(5):474-84 - PubMed
  14. Biopolymers. 2015 Jan;103(1):15-22 - PubMed
  15. FEBS Lett. 2000 Apr 21;472(1):73-7 - PubMed
  16. J Biol Chem. 2004 Apr 23;279(17):18026-33 - PubMed
  17. J Biol Chem. 1974 Sep 25;249(18):5867-71 - PubMed
  18. Biochem Biophys Res Commun. 2007 Jan 19;352(3):617-22 - PubMed
  19. J Biol Chem. 1995 Apr 21;270(16):9027-30 - PubMed
  20. J Muscle Res Cell Motil. 2011 Dec;32(4-5):257-70 - PubMed
  21. Biophys J. 2006 Aug 15;91(4):1288-301 - PubMed
  22. Circ Res. 2005 Apr 1;96(6):651-8 - PubMed
  23. J Physiol. 2009 Jan 15;587(2):443-60 - PubMed
  24. Mol Biosyst. 2013 Jul;9(7):1949-57 - PubMed
  25. FEBS Lett. 2000 Dec 8;486(2):178-82 - PubMed
  26. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350-4 - PubMed
  27. Mol Pharmacol. 2005 Jan;67(1):97-104 - PubMed
  28. Cell Calcium. 2009 Jan;45(1):29-37 - PubMed
  29. Biophys J. 2002 Jan;82(1 Pt 1):310-20 - PubMed
  30. J Biol Chem. 2005 Nov 25;280(47):39302-8 - PubMed
  31. J Biol Chem. 1997 Sep 12;272(37):23389-97 - PubMed
  32. J Biol Chem. 2003 Jan 31;278(5):3286-92 - PubMed
  33. Biochem J. 2008 Jul 15;413(2):291-303 - PubMed
  34. Hum Mol Genet. 2012 Jun 15;21(12):2759-67 - PubMed
  35. Nature. 1988 Jan 28;331(6154):315-9 - PubMed
  36. J Biol Chem. 2003 May 2;278(18):16176-82 - PubMed
  37. PLoS One. 2012;7(7):e39962 - PubMed
  38. Cell Calcium. 2008 Oct;44(4):363-73 - PubMed
  39. Biochim Biophys Acta. 2001 Dec 1;1515(2):120-32 - PubMed
  40. Am J Physiol. 1999 Nov;277(5 Pt 1):C974-81 - PubMed
  41. FASEB J. 2009 Jun;23(6):1710-20 - PubMed
  42. J Biol Chem. 1991 May 25;266(15):9453-9 - PubMed
  43. J Physiol. 2009 Jul 1;587(Pt 13):3095-100 - PubMed
  44. Biophys J. 2005 May;88(5):3444-54 - PubMed
  45. J Biol Chem. 1972 Dec 10;247(23):7835-7 - PubMed
  46. Biophys J. 2004 Apr;86(4):2121-8 - PubMed
  47. J Biol Chem. 2000 Jun 9;275(23):17639-46 - PubMed
  48. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1231-5 - PubMed

Publication Types