Display options
Share it on

J Mod Opt. 2015 Dec 08;62:S11-S20. doi: 10.1080/09500340.2014.992992. Epub 2015 Jan 21.

A master equation for a two-sided optical cavity.

Journal of modern optics

Thomas M Barlow, Robert Bennett, Almut Beige

Affiliations

  1. The School of Physics and Astronomy, University of Leeds , Leeds , UK .

PMID: 25892851 PMCID: PMC4396660 DOI: 10.1080/09500340.2014.992992

Abstract

Quantum optical systems, like trapped ions, are routinely described by master equations. The purpose of this paper is to introduce a master equation for two-sided optical cavities with spontaneous photon emission. To do so, we use the same notion of photons as in linear optics scattering theory and consider a continuum of travelling-wave cavity photon modes. Our model predicts the same stationary state photon emission rates for the different sides of a laser-driven optical cavity as classical theories. Moreover, it predicts the same time evolution of the total cavity photon number as the standard standing-wave description in experiments with resonant and near-resonant laser driving. The proposed resonator Hamiltonian can be used, for example, to analyse coherent cavity-fiber networks [E. Kyoseva et al., New J. Phys. 14, 023023 (2012)].

Keywords: cavity QED; quantum information; quantum optics

References

  1. Phys Rev Lett. 1996 Aug 26;77(9):1739-1742 - PubMed
  2. Phys Rev Lett. 1987 Jan 26;58(4):353-356 - PubMed
  3. Phys Rev A. 1990 Jan 1;41(1):369-380 - PubMed
  4. Phys Rev Lett. 2007 May 11;98(19):193601 - PubMed
  5. Phys Rev A Gen Phys. 1987 Jun 1;35(11):4661-4672 - PubMed
  6. Phys Rev A. 1990 Dec 1;42(11):6845-6857 - PubMed
  7. Phys Rev A. 1991 Jan 1;43(1):467-491 - PubMed
  8. Phys Rev A Gen Phys. 1987 Oct 15;36(8):3803-3818 - PubMed
  9. Phys Rev A. 1992 Oct 1;46(7):4306-4322 - PubMed
  10. Phys Rev A. 1995 Dec;52(6):4853-4860 - PubMed
  11. Phys Rev A Gen Phys. 1985 Jun;31(6):3761-3774 - PubMed
  12. Nature. 2012 Apr 11;484(7393):195-200 - PubMed

Publication Types