Display options
Share it on

FEBS Open Bio. 2015 Mar 05;5:155-62. doi: 10.1016/j.fob.2015.02.006. eCollection 2015.

Oligomer-dependent and -independent chaperone activity of sHsps in different stressed conditions.

FEBS open bio

Liang Liu, Jiyun Chen, Bo Yang, Yonghua Wang

Affiliations

  1. School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China.
  2. Institute of Systems Biomedicine and Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
  3. College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510641, China.

PMID: 25834780 PMCID: PMC4359974 DOI: 10.1016/j.fob.2015.02.006

Abstract

A great number of studies have proven that sHsps protect cells by inhibiting protein aggregation under heat stress, while little is known about their function to protect cells under acid stress. In this work, we show that Hsp20.1 and Hsp14.1 oligomers dissociated to smaller oligomeric species or even dimer/monomer at low pH (pH 4.0 and pH 2.0), whereas no prominent quaternary structural changes were seen at 50 °C. Both oligomers and smaller oligomeric species exhibited abilities to suppress client aggregation at low pH and at 50 °C. These results suggest that sHsps may function in different modes in different stressed conditions.

Keywords: Acid stress; CTE, C-terminal extension; EM, electron microscopy; Hsp14.0, Sulfolobus tokodaii heat shock protein 14.0; Hsp14.1, Sulfolobus solfataricus heat shock 14.1; Hsp20.1, Sulfolobus solfataricus heat shock 20.1; MDH, malate dehydrogenase; Molecular chaperone; SEC, size exclusion chromatography; Small heat shock protein (sHsp); Temperature stress; sHsps, small heat shock proteins

References

  1. FEBS Lett. 2014 Aug 25;588(17):2944-51 - PubMed
  2. Top Curr Chem. 2013;328:69-98 - PubMed
  3. Mol Cell. 2008 Feb 1;29(2):207-16 - PubMed
  4. Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15604-9 - PubMed
  5. Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20491-6 - PubMed
  6. Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):1071-6 - PubMed
  7. Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):18896-901 - PubMed
  8. Nature. 1998 Aug 6;394(6693):595-9 - PubMed
  9. FEBS Lett. 2011 Nov 4;585(21):3396-402 - PubMed
  10. Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):E1562-70 - PubMed
  11. J Biol Chem. 1993 Jan 25;268(3):1517-20 - PubMed
  12. Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5557-62 - PubMed
  13. Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):7835-40 - PubMed
  14. Nat Struct Mol Biol. 2005 Oct;12(10):842-6 - PubMed
  15. J Biol Chem. 2013 Feb 15;288(7):4819-30 - PubMed
  16. Cell Stress Chaperones. 1999 Jun;4(2):129-38 - PubMed
  17. J Mol Biol. 2012 Jan 20;415(3):538-46 - PubMed
  18. Mol Microbiol. 2001 Mar;39(6):1494-503 - PubMed
  19. J Sci Food Agric. 2014 Jun;94(8):1614-21 - PubMed
  20. Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2007-12 - PubMed
  21. Structure. 2013 Feb 5;21(2):220-8 - PubMed
  22. J Biol Chem. 2012 Jan 6;287(2):1128-38 - PubMed
  23. Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8151-5 - PubMed
  24. Trends Biochem Sci. 2012 Mar;37(3):106-17 - PubMed
  25. J Biol Chem. 2008 May 16;283(20):13679-87 - PubMed
  26. Curr Top Med Chem. 2012;12(22):2623-40 - PubMed
  27. Protein Sci. 2004 Jan;13(1):134-44 - PubMed
  28. Nat Rev Mol Cell Biol. 2010 Nov;11(11):777-88 - PubMed
  29. J Bioenerg Biomembr. 2004 Feb;36(1):5-15 - PubMed

Publication Types