Display options
Share it on

Front Comput Neurosci. 2015 Apr 22;9:43. doi: 10.3389/fncom.2015.00043. eCollection 2015.

Shape representations in the primate dorsal visual stream.

Frontiers in computational neuroscience

Tom Theys, Maria C Romero, Johannes van Loon, Peter Janssen

Affiliations

  1. Laboratorium voor Neuro- en Psychofysiologie, Katholieke Universiteit Leuven Leuven, Belgium ; Afdeling Experimentele Neurochirurgie en Neuroanatomie, Katholieke Universiteit Leuven Leuven, Belgium.
  2. Laboratorium voor Neuro- en Psychofysiologie, Katholieke Universiteit Leuven Leuven, Belgium.
  3. Afdeling Experimentele Neurochirurgie en Neuroanatomie, Katholieke Universiteit Leuven Leuven, Belgium.

PMID: 25954189 PMCID: PMC4406065 DOI: 10.3389/fncom.2015.00043

Abstract

The primate visual system extracts object shape information for object recognition in the ventral visual stream. Recent research has demonstrated that object shape is also processed in the dorsal visual stream, which is specialized for spatial vision and the planning of actions. A number of studies have investigated the coding of 2D shape in the anterior intraparietal area (AIP), one of the end-stage areas of the dorsal stream which has been implicated in the extraction of affordances for the purpose of grasping. These findings challenge the current understanding of area AIP as a critical stage in the dorsal stream for the extraction of object affordances. The representation of three-dimensional (3D) shape has been studied in two interconnected areas known to be critical for object grasping: area AIP and area F5a in the ventral premotor cortex (PMv), to which AIP projects. In both areas neurons respond selectively to 3D shape defined by binocular disparity, but the latency of the neural selectivity is approximately 10 ms longer in F5a compared to AIP, consistent with its higher position in the hierarchy of cortical areas. Furthermore, F5a neurons were more sensitive to small amplitudes of 3D curvature and could detect subtle differences in 3D structure more reliably than AIP neurons. In both areas, 3D-shape selective neurons were co-localized with neurons showing motor-related activity during object grasping in the dark, indicating a close convergence of visual and motor information on the same clusters of neurons.

Keywords: depth; dorsal stream; macaque; object; parietal cortex; shape; visual cortex

References

  1. Science. 1969 Dec 5;166(3910):1303-6 - PubMed
  2. J Neurosci. 2013 Dec 4;33(49):19352-61 - PubMed
  3. J Neurophysiol. 2006 Feb;95(2):709-29 - PubMed
  4. J Neurophysiol. 2000 May;83(5):2580-601 - PubMed
  5. J Neurosci. 2004 Apr 14;24(15):3795-800 - PubMed
  6. PLoS One. 2013;8(2):e55340 - PubMed
  7. Cereb Cortex. 2008 May;18(5):1094-111 - PubMed
  8. Annu Rev Neurosci. 2002;25:189-220 - PubMed
  9. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):8217-22 - PubMed
  10. J Comp Neurol. 2009 Jan 10;512(2):183-217 - PubMed
  11. Nature. 1991 Jan 10;349(6305):154-6 - PubMed
  12. J Neurophysiol. 2001 Dec;86(6):2856-67 - PubMed
  13. J Neurophysiol. 2007 Dec;98(6):3708-30 - PubMed
  14. Exp Brain Res. 1998 Feb;118(3):373-80 - PubMed
  15. Neuroimage. 2009 Aug 1;47(1):262-72 - PubMed
  16. J Neurosci. 2009 Jan 21;29(3):727-42 - PubMed
  17. J Neurosci. 2001 Oct 15;21(20):8174-87 - PubMed
  18. Science. 2002 Oct 11;298(5592):409-12 - PubMed
  19. J Neurophysiol. 2012 Feb;107(3):995-1008 - PubMed
  20. Neuron. 2012 Jan 12;73(1):171-82 - PubMed
  21. J Neurosci. 2014 Mar 12;34(11):4006-21 - PubMed
  22. Ann N Y Acad Sci. 2013 Dec;1305:72-82 - PubMed
  23. Neural Netw. 1998 Oct;11(7-8):1277-1303 - PubMed
  24. Eur J Neurosci. 2012 Aug;36(3):2324-34 - PubMed
  25. J Neurophysiol. 1997 May;77(5):2268-92 - PubMed
  26. Neuron. 2000 Aug;27(2):385-97 - PubMed
  27. Annu Rev Neurosci. 1996;19:109-39 - PubMed
  28. J Neurosci. 2009 Aug 26;29(34):10613-26 - PubMed
  29. J Cogn Neurosci. 2013 Mar;25(3):352-64 - PubMed
  30. J Neurosci. 2010 Nov 17;30(46):15491-508 - PubMed
  31. Nature. 1998 Oct 1;395(6701):500-3 - PubMed
  32. Neural Netw. 2007 Jul;20(5):631-45 - PubMed
  33. Neuroscience. 2010 Apr 28;167(1):1-10 - PubMed
  34. J Neurosci. 2008 Jun 25;28(26):6679-90 - PubMed
  35. Nat Neurosci. 1999 Nov;2(11):1019-25 - PubMed
  36. J Neurosci. 2009 May 20;29(20):6436-48 - PubMed
  37. J Neurosci. 2012 Aug 29;32(35):12038-50 - PubMed
  38. Brain. 2003 Nov;126(Pt 11):2463-75 - PubMed
  39. Science. 2000 Jun 16;288(5473):2054-6 - PubMed
  40. IEEE Trans Pattern Anal Mach Intell. 2013 Aug;35(8):1847-71 - PubMed
  41. Neuron. 2007 Aug 2;55(3):493-505 - PubMed
  42. J Neurosci. 2010 Jan 6;30(1):342-9 - PubMed
  43. Brain. 2001 Mar;124(Pt 3):571-86 - PubMed
  44. Brain Struct Funct. 2011 Mar;216(1):43-65 - PubMed
  45. Neuroreport. 1994 Jul 21;5(12):1525-9 - PubMed
  46. J Neurosci. 2012 Feb 29;32(9):3221-34 - PubMed
  47. Neuron. 2001 Sep 27;31(6):889-901 - PubMed
  48. Annu Rev Neurosci. 1999;22:319-49 - PubMed
  49. J Neurophysiol. 2012 Sep;108(6):1607-19 - PubMed

Publication Types