Display options
Share it on

Front Comput Neurosci. 2015 Apr 21;9:46. doi: 10.3389/fncom.2015.00046. eCollection 2015.

Spiking neuron network Helmholtz machine.

Frontiers in computational neuroscience

Pavel Sountsov, Paul Miller

Affiliations

  1. Neuroscience Graduate Program, Brandeis University Waltham, MA, USA ; Volen National Center for Complex Systems, Brandeis University Waltham, MA, USA.
  2. Volen National Center for Complex Systems, Brandeis University Waltham, MA, USA ; Department of Biology, Brandeis University Waltham, MA, USA.

PMID: 25954191 PMCID: PMC4405618 DOI: 10.3389/fncom.2015.00046

Abstract

An increasing amount of behavioral and neurophysiological data suggests that the brain performs optimal (or near-optimal) probabilistic inference and learning during perception and other tasks. Although many machine learning algorithms exist that perform inference and learning in an optimal way, the complete description of how one of those algorithms (or a novel algorithm) can be implemented in the brain is currently incomplete. There have been many proposed solutions that address how neurons can perform optimal inference but the question of how synaptic plasticity can implement optimal learning is rarely addressed. This paper aims to unify the two fields of probabilistic inference and synaptic plasticity by using a neuronal network of realistic model spiking neurons to implement a well-studied computational model called the Helmholtz Machine. The Helmholtz Machine is amenable to neural implementation as the algorithm it uses to learn its parameters, called the wake-sleep algorithm, uses a local delta learning rule. Our spiking-neuron network implements both the delta rule and a small example of a Helmholtz machine. This neuronal network can learn an internal model of continuous-valued training data sets without supervision. The network can also perform inference on the learned internal models. We show how various biophysical features of the neural implementation constrain the parameters of the wake-sleep algorithm, such as the duration of the wake and sleep phases of learning and the minimal sample duration. We examine the deviations from optimal performance and tie them to the properties of the synaptic plasticity rule.

Keywords: Bayesian inference; sleep; spiking neural network; synaptic plasticity; unsupervised learning

References

  1. Vision Res. 2001 Feb;41(4):449-61 - PubMed
  2. Nat Neurosci. 2004 Oct;7(10):1055-6 - PubMed
  3. Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4722-7 - PubMed
  4. PLoS Comput Biol. 2011 Dec;7(12):e1002294 - PubMed
  5. Nature. 2004 Jan 15;427(6971):244-7 - PubMed
  6. Nat Neurosci. 2006 Nov;9(11):1432-8 - PubMed
  7. J Neurosci. 2006 Sep 20;26(38):9673-82 - PubMed
  8. Nat Neurosci. 2010 Mar;13(3):379-85 - PubMed
  9. Prog Brain Res. 2004;145:179-96 - PubMed
  10. PLoS Comput Biol. 2011 Nov;7(11):e1002211 - PubMed
  11. Cereb Cortex. 2007 May;17(5):1074-84 - PubMed
  12. Curr Opin Neurobiol. 2008 Apr;18(2):217-22 - PubMed
  13. Neural Comput. 1999 Apr 1;11(3):653-78 - PubMed
  14. Science. 1995 May 26;268(5214):1158-61 - PubMed
  15. Nat Rev Neurosci. 2004 Feb;5(2):97-107 - PubMed
  16. Science. 2006 Feb 17;311(5763):1020-2 - PubMed
  17. J Neurosci. 2010 Jun 2;30(22):7714-21 - PubMed
  18. Curr Opin Neurobiol. 2012 Jun;22(3):516-21 - PubMed
  19. J Neurophysiol. 2008 Sep;100(3):1160-8 - PubMed
  20. Psychol Sci. 2006 Sep;17(9):767-73 - PubMed
  21. Neural Comput. 2008 Jan;20(1):91-117 - PubMed
  22. PLoS Comput Biol. 2013 Apr;9(4):e1003037 - PubMed
  23. Neural Netw. 2009 Oct;22(8):1093-104 - PubMed
  24. Psychol Rev. 2010 Oct;117(4):1144-67 - PubMed
  25. Trends Cogn Sci. 2010 Aug;14(8):357-64 - PubMed
  26. Nat Neurosci. 2002 Jun;5(6):598-604 - PubMed
  27. Science. 2011 Jan 7;331(6013):83-7 - PubMed
  28. Nat Rev Neurosci. 2013 Jun;14(6):380 - PubMed
  29. J Neurosci. 1990 Sep;10(9):3178-82 - PubMed
  30. Curr Biol. 2004 Feb 3;14(3):257-62 - PubMed
  31. J Neurophysiol. 1999 Mar;81(3):1355-64 - PubMed
  32. Neural Comput. 1997 Nov 15;9(8):1781-803 - PubMed
  33. J Neurophysiol. 2006 Dec;96(6):3183-93 - PubMed
  34. Neural Netw. 1996 Nov;9(8):1385-1403 - PubMed
  35. Curr Opin Neurobiol. 2000 Apr;10(2):180-6 - PubMed
  36. Trends Neurosci. 2001 Feb;24(2):122-6 - PubMed
  37. Nature. 2002 Jan 24;415(6870):429-33 - PubMed
  38. J Neurosci. 2006 Oct 11;26(41):10420-9 - PubMed
  39. J Neurophysiol. 2006 Dec;96(6):3305-13 - PubMed
  40. Neural Comput. 1995 Sep;7(5):889-904 - PubMed
  41. Neuron. 2006 Jul 20;51(2):227-38 - PubMed
  42. Science. 2005 Sep 30;309(5744):2228-32 - PubMed
  43. Neuron. 2008 Oct 23;60(2):321-7 - PubMed
  44. J Vis. 2010 Jul 01;10(8):2 - PubMed
  45. Curr Opin Neurobiol. 2011 Oct;21(5):774-81 - PubMed
  46. Neural Comput. 2008 Jan;20(1):118-45 - PubMed
  47. PLoS Comput Biol. 2009 Feb;5(2):e1000284 - PubMed
  48. Comput Sci Eng. 2010 May;12(3):66-72 - PubMed
  49. Physiol Behav. 2002 Dec;77(4-5):645-50 - PubMed
  50. IEEE Trans Neural Netw. 2003;14(6):1569-72 - PubMed
  51. Science. 2004 Jun 25;304(5679):1926-9 - PubMed
  52. Nat Rev Neurosci. 2009 Sep;10(9):647-58 - PubMed
  53. Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2745-50 - PubMed
  54. Trends Cogn Sci. 2010 Mar;14(3):119-30 - PubMed
  55. J Neurosci. 2013 May 8;33(19):8227-36 - PubMed
  56. J Neurosci. 1982 Jan;2(1):32-48 - PubMed
  57. J Neurosci. 2006 Oct 4;26(40):10154-63 - PubMed
  58. J Neurosci. 2012 Nov 28;32(48):17108-19 - PubMed

Publication Types

Grant support