Display options
Share it on

F1000Res. 2015 Jan 21;4:17. doi: 10.12688/f1000research.6037.1. eCollection 2015.

Long read nanopore sequencing for detection of HLA and CYP2D6 variants and haplotypes.

F1000Research

Ron Ammar, Tara A Paton, Dax Torti, Adam Shlien, Gary D Bader

Affiliations

  1. The Donnelly Centre, University of Toronto, Toronto, ON, M5S3E1, Canada.
  2. The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G0A4, Canada.
  3. Department of Laboratory Medicine and Pathobiology, University of Toronto; Program in Genetics and Genome Biology & Department of Paediatric Laboratory Medicine The Hospital for Sick Children, Toronto, ON, M5G1X8, Canada.
  4. The Donnelly Centre, University of Toronto, Toronto, ON, M5S3E1, Canada ; Department of Computer Science, University of Toronto, Toronto, ON, M5S3G4, Canada ; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada.

PMID: 25901276 PMCID: PMC4392832 DOI: 10.12688/f1000research.6037.1

Abstract

Haplotypes are often critical for the interpretation of genetic laboratory observations into medically actionable findings. Current massively parallel DNA sequencing technologies produce short sequence reads that are often unable to resolve haplotype information. Phasing short read data typically requires supplemental statistical phasing based on known haplotype structure in the population or parental genotypic data. Here we demonstrate that the MinION nanopore sequencer is capable of producing very long reads to resolve both variants and haplotypes of HLA-A, HLA-B and CYP2D6 genes important in determining patient drug response in sample NA12878 of CEPH/UTAH pedigree 1463, without the need for statistical phasing. Long read data from a single 24-hour nanopore sequencing run was used to reconstruct haplotypes, which were confirmed by HapMap data and statistically phased Complete Genomics and Sequenom genotypes. Our results demonstrate that nanopore sequencing is an emerging standalone technology with potential utility in a clinical environment to aid in medical decision-making.

Keywords: DNA; nanopore; sequencing, haplotype, pharmacogenomics

References

  1. Clin Pharmacokinet. 2009;48(12):761-804 - PubMed
  2. Pharmacogenomics. 2014 Jun;15(9):1223-34 - PubMed
  3. Nat Methods. 2012 Mar 04;9(4):357-9 - PubMed
  4. Clin Pharmacol Ther. 2014 Jun;95(6):598-600 - PubMed
  5. Nature. 2007 Oct 18;449(7164):851-61 - PubMed
  6. Clin Pharmacol Ther. 2011 Mar;89(3):387-91 - PubMed
  7. Pharmacol Ther. 2013 Apr;138(1):103-41 - PubMed
  8. Curr Protoc Bioinformatics. 2013;43:11.10.1-33 - PubMed
  9. JAMA. 2005 Mar 23;293(12):1485-9 - PubMed
  10. Clin Pharmacol Ther. 2013 Feb;93(2):153-8 - PubMed
  11. Bioinformatics. 2009 Aug 15;25(16):2078-9 - PubMed
  12. Nucleic Acids Res. 1995 Jun 11;23(11):2049-57 - PubMed
  13. Clin Pharmacol Ther. 2014 Apr;95(4):376-82 - PubMed
  14. J Clin Oncol. 2001 Apr 15;19(8):2293-301 - PubMed
  15. Clin Pharmacol Ther. 2013 May;93(5):402-8 - PubMed
  16. Science. 2010 Jan 1;327(5961):78-81 - PubMed
  17. Clin Pharmacol Ther. 2014 May;95(5):499-500 - PubMed
  18. Immunogenetics. 2008 Jan;60(1):1-18 - PubMed
  19. BMC Bioinformatics. 2012 Sep 19;13:238 - PubMed
  20. Nucleic Acids Res. 2012 Aug;40(15):e115 - PubMed
  21. PLoS Comput Biol. 2008 Feb 29;4(2):e1000016 - PubMed
  22. Am J Hum Genet. 2007 Nov;81(5):1084-97 - PubMed
  23. Clin Pharmacol Ther. 2013 Sep;94(3):324-8 - PubMed
  24. Bioinformatics. 2009 Jul 15;25(14):1754-60 - PubMed
  25. Nat Rev Genet. 2011 Sep 16;12(10):703-14 - PubMed
  26. Genome Res. 2011 Mar;21(3):487-93 - PubMed

Publication Types