Display options
Share it on

Exp Hematol Oncol. 2015 Apr 01;4:10. doi: 10.1186/s40164-015-0004-3. eCollection 2015.

Immunohistochemical analysis indicates that the anatomical location of B-cell non-Hodgkin's lymphoma is determined by differentially expressed chemokine receptors, sphingosine-1-phosphate receptors and integrins.

Experimental hematology & oncology

Stephen Middle, Sarah E Coupland, Azzam Taktak, Victoria Kidgell, Joseph R Slupsky, Andrew R Pettitt, Kathleen J Till

Affiliations

  1. Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, England.
  2. Medical Physics and Clinical Engineering, Royal Liverpool University Hospital, Liverpool, England.
  3. ORLAU, RJAH Orthopaedic hospital NHS Foundation Trust, Oswestry, England.

PMID: 25938000 PMCID: PMC4416323 DOI: 10.1186/s40164-015-0004-3

Abstract

BACKGROUND: The aim of this study was to elucidate the mechanisms responsible for the location of B-cell non-Hodgkin's lymphoma (B-NHL) at different anatomical sites. We speculated that the malignant B cells in these disorders have the potential for trafficking between blood and secondary lymphoid organs (SLO) or extranodal sites and that their preferential accumulation at different locations is governed by the expression of key molecules that regulate the trafficking of normal lymphocytes.

METHODS: Biopsy or blood samples from 91 cases of B-NHL affecting SLO (n = 27), ocular adnexae (n = 51) or blood (n = 13) were analysed by immunohistochemistry or flow cytometry for the expression of the following molecules: CCR7, CCL21 and αL (required for the entry of normal lymphocytes into SLO); CXCR4, CXCL12 and α4 (required for entry into extranodal sites); CXCR5, CXCL13 and S1PR2 (required for tissue retention); S1PR1 and S1PR3 (required for egress into the blood). The expression of each of these molecules was then related to anatomical location and histological subtype.

RESULTS: The expression of motility/adhesion molecules varied widely between individual patient samples and correlated much more strongly with anatomical location than with histological subtype. SLO lymphomas [comprising 10 follicular lymphoma (FL), 8 diffuse large B-cell lymphoma (DLBCL), 4 mantle-cell lymphoma (MCL) and 5 marginal-zone lymphoma (MZL)] were characterised by pronounced over-expression of S1PR2, suggesting that the malignant cells in these lymphomas are actively retained at the site of clonal expansion. In contrast, the malignant B cells in ocular adnexal lymphomas (10 FL, 9 DLBCL, 4 MCL and 28 MZL) expressed a profile of molecules suggesting a dynamic process of trafficking involving not only tissue retention but also egress via S1PR3 and homing back to extranodal sites via CXCR4/CXCL12 and α4. Finally, leukaemic lymphomas (6 FL, 5 MCL and 2 MZL) were characterised by aberrant expression of the egress receptor S1PR1 and low expression of molecules required for tissue entry/retention.

CONCLUSIONS: In summary, our study strongly suggests that anatomical location in B-NHL is governed by the differential expression of specific adhesion/motility molecules. This novel observation has important implications for therapeutic strategies that aim to disrupt protective micro-environmental interactions.

Keywords: B-NHL; Chemokine; Egress; Homing; Integrin; Lymphoma; Microenvironment; S1P receptors

References

  1. Arch Pathol Lab Med. 2008 Apr;132(4):565-78 - PubMed
  2. J Exp Med. 1999 May 3;189(9):1467-78 - PubMed
  3. J Exp Med. 2000 Apr 17;191(8):1303-18 - PubMed
  4. Clin Cancer Res. 2013 Jul 1;19(13):3495-507 - PubMed
  5. Blood. 2004 Jul 15;104(2):502-8 - PubMed
  6. Blood. 2005 Sep 15;106(6):1924-31 - PubMed
  7. J Leukoc Biol. 2004 Aug;76(2):462-71 - PubMed
  8. Mol Cancer. 2013 Jul 31;12 (1):85 - PubMed
  9. N Engl J Med. 2013 Aug 8;369(6):507-16 - PubMed
  10. Haematologica. 2012 Aug;97(8):1255-63 - PubMed
  11. N Engl J Med. 2014 Mar 13;370(11):1008-18 - PubMed
  12. Nat Rev Immunol. 2005 Jul;5(7):560-70 - PubMed
  13. Nat Rev Immunol. 2005 Aug;5(8):606-16 - PubMed
  14. J Exp Med. 2002 Jul 1;196(1):65-75 - PubMed
  15. J Clin Oncol. 1999 Jun;17(6):1869-75 - PubMed
  16. Nat Rev Immunol. 2011 Jun;11(6):403-15 - PubMed
  17. Science. 2002 Jul 19;297(5580):409-12 - PubMed
  18. J Mol Med (Berl). 2012 Nov;90(11):1237-45 - PubMed
  19. Blood. 2013 Oct 3;122(14):2412-24 - PubMed
  20. Cancer Res. 2009 Nov 15;69(22):8686-92 - PubMed
  21. Int J Cancer. 2014 Dec 1;135(11):2623-32 - PubMed
  22. Curr Oncol Rep. 2012 Oct;14(5):411-8 - PubMed
  23. Curr Opin Immunol. 2000 Jun;12(3):336-41 - PubMed
  24. J Clin Oncol. 2013 Jul 20;31(21):2654-61 - PubMed
  25. J Exp Med. 2005 Jan 17;201(2):291-301 - PubMed
  26. J Clin Oncol. 2013 Jan 1;31(1):88-94 - PubMed
  27. Int J Cancer. 1997 Sep 17;72(6):923-30 - PubMed
  28. Semin Cancer Biol. 2011 Nov;21(5):308-12 - PubMed
  29. Acta Ophthalmol. 2012 Sep;90(6):534-9 - PubMed
  30. Nat Immunol. 2011 Jun 05;12(7):672-80 - PubMed
  31. Histopathology. 2011 Jan;58(1):69-80 - PubMed
  32. Cancer Lett. 2008 Jun 28;265(1):98-106 - PubMed
  33. Cell. 1999 Oct 1;99(1):23-33 - PubMed
  34. Int Immunol. 2010 Jun;22(6):413-9 - PubMed
  35. Blood. 2009 May 7;113(19):4604-13 - PubMed
  36. Blood. 2013 Aug 15;122(7):1256-65 - PubMed
  37. Haematologica. 2013 Sep;98(9):1433-41 - PubMed
  38. Clin Exp Immunol. 2003 Dec;134(3):409-19 - PubMed
  39. Med Res Rev. 2003 May;23(3):369-92 - PubMed
  40. Infect Agent Cancer. 2012 Apr 02;7:8 - PubMed
  41. J Exp Med. 2011 Nov 21;208(12):2497-510 - PubMed
  42. Blood. 2007 Nov 1;110(9):3102-11 - PubMed
  43. Immunol Rev. 2000 Oct;177:175-84 - PubMed
  44. Curr Mol Med. 2014 Jan;14(1):174-84 - PubMed
  45. Cell Adhes Commun. 1998;6(2-3):111-6 - PubMed
  46. Blood. 2002 Apr 15;99(8):2977-84 - PubMed
  47. Cell. 2010 Nov 12;143(4):503-5 - PubMed
  48. Am J Surg Pathol. 2005 Dec;29(12):1549-57 - PubMed
  49. Eye (Lond). 2013 Feb;27(2):180-9 - PubMed
  50. J Immunol. 1989 May 1;142(9):3058-62 - PubMed

Publication Types