Display options
Share it on

Front Neurorobot. 2015 Apr 07;9:1. doi: 10.3389/fnbot.2015.00001. eCollection 2015.

From grid cells and visual place cells to multimodal place cell: a new robotic architecture.

Frontiers in neurorobotics

Adrien Jauffret, Nicolas Cuperlier, Philippe Gaussier

Affiliations

  1. ETIS, UMR 8051/ENSEA, Université Cergy-Pontoise, CNRS Cergy, France.

PMID: 25904862 PMCID: PMC4388131 DOI: 10.3389/fnbot.2015.00001

Abstract

In the present study, a new architecture for the generation of grid cells (GC) was implemented on a real robot. In order to test this model a simple place cell (PC) model merging visual PC activity and GC was developed. GC were first built from a simple "several to one" projection (similar to a modulo operation) performed on a neural field coding for path integration (PI). Robotics experiments raised several practical and theoretical issues. To limit the important angular drift of PI, head direction information was introduced in addition to the robot proprioceptive signal coming from the wheel rotation. Next, a simple associative learning between visual place cells and the neural field coding for the PI has been used to recalibrate the PI and to limit its drift. Finally, the parameters controlling the shape of the PC built from the GC have been studied. Increasing the number of GC obviously improves the shape of the resulting place field. Yet, other parameters such as the discretization factor of PI or the lateral interactions between GC can have an important impact on the place field quality and avoid the need of a very large number of GC. In conclusion, our results show our GC model based on the compression of PI is congruent with neurobiological studies made on rodent. GC firing patterns can be the result of a modulo transformation of PI information. We argue that such a transformation may be a general property of the connectivity from the cortex to the entorhinal cortex. Our model predicts that the effect of similar transformations on other kinds of sensory information (visual, tactile, auditory, etc…) in the entorhinal cortex should be observed. Consequently, a given EC cell should react to non-contiguous input configurations in non-spatial conditions according to the projection from its different inputs.

Keywords: entorhinal cortex modeling; grid cells; mobile robot; neural network; place cells

References

  1. Neuroreport. 1999 Feb 25;10(3):625-30 - PubMed
  2. Behav Brain Res. 1999 Mar;99(2):143-52 - PubMed
  3. Biol Cybern. 2000 Sep;83(3):287-99 - PubMed
  4. Behav Neurosci. 2001 Feb;115(1):3-25 - PubMed
  5. Mol Neurobiol. 2000 Feb-Apr;21(1-2):57-82 - PubMed
  6. Biol Cybern. 2002 Jan;86(1):15-28 - PubMed
  7. Neuroscience. 2003;119(2):577-88 - PubMed
  8. Hippocampus. 2004;14(2):180-92 - PubMed
  9. Exp Brain Res. 2004 Dec;159(3):349-59 - PubMed
  10. J Neurosci. 1992 May;12(5):1945-63 - PubMed
  11. Neural Comput. 2005 Jun;17(6):1339-84 - PubMed
  12. Nature. 2005 Aug 11;436(7052):801-6 - PubMed
  13. Behav Neurosci. 2006 Feb;120(1):135-49 - PubMed
  14. J Neurosci. 2006 Apr 19;26(16):4266-76 - PubMed
  15. Science. 2006 May 5;312(5774):758-62 - PubMed
  16. Nat Rev Neurosci. 2006 Aug;7(8):663-78 - PubMed
  17. Network. 2006 Dec;17(4):447-65 - PubMed
  18. Hippocampus. 2007;17(9):801-12 - PubMed
  19. J Integr Neurosci. 2007 Sep;6(3):447-76 - PubMed
  20. Neural Plast. 2008;2008:658323 - PubMed
  21. Front Neurorobot. 2007 Nov 02;1:3 - PubMed
  22. Hippocampus. 2009 May;19(5):456-79 - PubMed
  23. Science. 2008 Dec 19;322(5909):1865-8 - PubMed
  24. PLoS Comput Biol. 2010 Nov 11;6(11):e1000995 - PubMed
  25. Hippocampus. 2012 Feb;22(2):320-34 - PubMed
  26. J Neurosci. 2011 Nov 9;31(45):16157-76 - PubMed
  27. Front Neural Circuits. 2012 Apr 18;6:16 - PubMed
  28. PLoS Comput Biol. 2012;8(8):e1002651 - PubMed
  29. Nat Neurosci. 2012 Oct;15(10):1445-53 - PubMed
  30. J Neurosci. 1990 Feb;10(2):420-35 - PubMed
  31. Nature. 2012 Nov 29;491(7426):761-4 - PubMed
  32. Behav Brain Res. 2013 Oct 1;254:50-64 - PubMed
  33. Philos Trans R Soc Lond B Biol Sci. 2013 Dec 23;369(1635):20130370 - PubMed
  34. FASEB J. 1988 Oct;2(13):2849-57 - PubMed
  35. J Neurosci. 1995 Jan;15(1 Pt 1):70-86 - PubMed
  36. Exp Brain Res. 1994;101(1):8-23 - PubMed
  37. Biol Cybern. 1977 Aug 3;27(2):77-87 - PubMed
  38. J Neurophysiol. 1997 Aug;78(2):1062-81 - PubMed

Publication Types