Display options
Share it on

Front Microbiol. 2015 Apr 08;6:256. doi: 10.3389/fmicb.2015.00256. eCollection 2015.

Antigiardial activity of novel triazolyl-quinolone-based chalcone derivatives: when oxygen makes the difference.

Frontiers in microbiology

Vijay Bahadur, Daniela Mastronicola, Amit K Singh, Hemandra K Tiwari, Leopoldo P Pucillo, Paolo Sarti, Brajendra K Singh, Alessandro Giuffrè

Affiliations

  1. Bio-Organic Laboratory, Department of Chemistry, University of Delhi Delhi, India.
  2. CNR Institute of Molecular Biology and Pathology Rome, Italy ; Department of Biochemical Sciences and Istituto Pasteur - Fondazione Cenci Bolognetti, Sapienza University of Rome Rome, Italy.
  3. L. Spallanzani National Institute for Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico Rome, Italy.
  4. CNR Institute of Molecular Biology and Pathology Rome, Italy.

PMID: 25904901 PMCID: PMC4389562 DOI: 10.3389/fmicb.2015.00256

Abstract

Giardiasis is a common diarrheal disease worldwide caused by the protozoan parasite Giardia intestinalis. It is urgent to develop novel drugs to treat giardiasis, due to increasing clinical resistance to the gold standard drug metronidazole (MTZ). New potential antiparasitic compounds are usually tested for their killing efficacy against G. intestinalis under anaerobic conditions, in which MTZ is maximally effective. On the other hand, though commonly regarded as an 'anaerobic pathogen,' G. intestinalis is exposed to relatively high O2 levels in vivo, living attached to the mucosa of the proximal small intestine. It is thus important to test the effect of O2 when searching for novel potential antigiardial agents, as outlined in a previous study [Bahadur et al. (2014) Antimicrob. Agents Chemother. 58, 543]. Here, 45 novel chalcone derivatives with triazolyl-quinolone scaffold were synthesized, purified, and characterized by high resolution mass spectrometry, (1)H and (13)C nuclear magnetic resonance and infrared spectroscopy. Efficacy of the compounds against G. intestinalis trophozoites was tested under both anaerobic and microaerobic conditions, and selectivity was assessed in a counter-screen on human epithelial colorectal adenocarcinoma cells. MTZ was used as a positive control in the assays. All the tested compounds proved to be more effective against the parasite in the presence of O2, with the exception of MTZ that was less effective. Under anaerobiosis eighteen compounds were found to be as effective as MTZ or more (up to three to fourfold); the same compounds proved to be up to >100-fold more effective than MTZ under microaerobic conditions. Four of them represent potential candidates for the design of novel antigiardial drugs, being highly selective against Giardia trophozoites. This study further underlines the importance of taking O2 into account when testing novel potential antigiardial compounds.

Keywords: anaerobic protozoa; chemical synthesis; drug screening; intestinal disease; microaerobiosis

References

  1. Curr Pharm Des. 2009;15(25):2970-85 - PubMed
  2. Int J Antimicrob Agents. 2010 Jul;36(1):37-42 - PubMed
  3. Mol Biochem Parasitol. 1993 Jan;57(1):65-71 - PubMed
  4. Nat Rev Microbiol. 2010 Jun;8(6):413-22 - PubMed
  5. IUBMB Life. 2011 Jan;63(1):21-5 - PubMed
  6. J Antimicrob Chemother. 1993 Jan;31(1):9-20 - PubMed
  7. Org Lett. 2007 Apr 26;9(9):1809-11 - PubMed
  8. PLoS Negl Trop Dis. 2014 Jan 09;8(1):e2631 - PubMed
  9. J Biol Chem. 2008 Feb 15;283(7):4061-8 - PubMed
  10. Nature. 1965 May 29;206(987):943-4 - PubMed
  11. Antimicrob Agents Chemother. 2006 Jan;50(1):162-70 - PubMed
  12. Eur J Med Chem. 2010 Mar;45(3):1128-32 - PubMed
  13. Am J Surg. 1990 Mar;159(3):314-9 - PubMed
  14. Arch Biochem Biophys. 2009 Aug 1;488(1):9-13 - PubMed
  15. Eur J Med Chem. 2009 Apr;44(4):1427-36 - PubMed
  16. Eur J Med Chem. 2009 Feb;44(2):845-53 - PubMed
  17. J Med Microbiol. 1992 Sep;37(3):221-4 - PubMed
  18. Antimicrob Agents Chemother. 2014;58(1):543-9 - PubMed
  19. Gene. 2014 Feb 10;535(2):131-9 - PubMed
  20. Curr Opin Infect Dis. 2011 Oct;24(5):451-6 - PubMed
  21. Clin Microbiol Rev. 2007 Jan;20(1):164-87 - PubMed
  22. Bioorg Med Chem Lett. 2011 Nov 1;21(21):6573-6 - PubMed
  23. Free Radic Biol Med. 2013 Feb;55:130-40 - PubMed
  24. Free Radic Biol Med. 2011 Oct 15;51(8):1567-74 - PubMed
  25. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4586-91 - PubMed
  26. J Med Chem. 2003 Jul 3;46(14 ):2813-5 - PubMed
  27. Mol Biochem Parasitol. 1995 Jun;72(1-2):47-56 - PubMed
  28. N Engl J Med. 1970 Apr 30;282(18):1039-40 - PubMed
  29. Eur J Biochem. 1996 Oct 1;241(1):155-61 - PubMed
  30. Eur J Med Chem. 2010 Mar;45(3):957-66 - PubMed
  31. Mol Biochem Parasitol. 1996 Dec 20;83(2):211-20 - PubMed
  32. Clin Microbiol Rev. 2001 Jan;14(1):114-28 - PubMed
  33. Molecules. 2012 May 25;17(6):6179-95 - PubMed
  34. Curr Med Chem. 2007;14(17):1829-52 - PubMed
  35. J Med Chem. 1995 Dec 22;38(26):5031-7 - PubMed
  36. Biochem Biophys Res Commun. 2010 Sep 3;399(4):654-8 - PubMed
  37. Clin Infect Dis. 1994 May;18(5):760-3 - PubMed
  38. Clin Microbiol Rev. 2001 Jul;14(3):447-75 - PubMed
  39. Fundam Clin Pharmacol. 2008 Dec;22(6):633-48 - PubMed
  40. Biochem Biophys Res Commun. 2010 Aug 27;399(3):347-51 - PubMed
  41. Clin Microbiol Rev. 2001 Jan;14(1):150-64 - PubMed

Publication Types