Display options
Share it on

Sci Rep. 2015 May 11;5:9681. doi: 10.1038/srep09681.

High energetic excitons in carbon nanotubes directly probe charge-carriers.

Scientific reports

Giancarlo Soavi, Francesco Scotognella, Daniele Viola, Timo Hefner, Tobias Hertel, Giulio Cerullo, Guglielmo Lanzani

Affiliations

  1. Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy.
  2. 1] Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy [2] IFN-CNR, Piazza L. da Vinci, 32, 20133 Milano, Italy [3] Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133 Milano, Italy.
  3. Inst. for Physical and Theoretical Chemistry Dept. of Chemistry and Pharmacy, University of Wuerzburg, Wuerzburg 97074, Germany.
  4. 1] Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy [2] IFN-CNR, Piazza L. da Vinci, 32, 20133 Milano, Italy.
  5. 1] Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy [2] Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133 Milano, Italy.

PMID: 25959462 PMCID: PMC4426596 DOI: 10.1038/srep09681

Abstract

Theory predicts peculiar features for excited-state dynamics in one dimension (1D) that are difficult to be observed experimentally. Single-walled carbon nanotubes (SWNTs) are an excellent approximation to 1D quantum confinement, due to their very high aspect ratio and low density of defects. Here we use ultrafast optical spectroscopy to probe photogenerated charge-carriers in (6,5) semiconducting SWNTs. We identify the transient energy shift of the highly polarizable S33 transition as a sensitive fingerprint of charge-carriers in SWNTs. By measuring the coherent phonon amplitude profile we obtain a precise estimate of the Stark-shift and discuss the binding energy of the S33 excitonic transition. From this, we infer that charge-carriers are formed instantaneously (<50 fs) even upon pumping the first exciton, S11. The decay of the photogenerated charge-carrier population is well described by a model for geminate recombination in 1D.

References

  1. J Phys Chem A. 2011 Apr 28;115(16):3917-23 - PubMed
  2. Nano Lett. 2014 Feb 12;14(2):504-11 - PubMed
  3. ACS Nano. 2012 Jun 26;6(6):5083-90 - PubMed
  4. Phys Rev Lett. 2010 Jan 8;104(1):017401 - PubMed
  5. Nano Lett. 2006 Dec;6(12):2696-700 - PubMed
  6. Phys Rev Lett. 2005 Mar 11;94(9):097401 - PubMed
  7. Phys Rev Lett. 2004 Feb 20;92(7):077402 - PubMed
  8. Science. 2005 May 6;308(5723):838-41 - PubMed
  9. Phys Rev Lett. 2005 Sep 30;95(14):146805 - PubMed
  10. Science. 2000 Mar 10;287(5459):1801-4 - PubMed
  11. Phys Rev Lett. 2011 Oct 28;107(18):187401 - PubMed
  12. Nano Lett. 2008 Dec;8(12):4238-42 - PubMed
  13. Nano Lett. 2006 Feb;6(2):301-5 - PubMed
  14. Nano Lett. 2008 Jul;8(7):1890-5 - PubMed
  15. Nano Lett. 2007 Mar;7(3):609-13 - PubMed
  16. Nano Lett. 2005 Feb;5(2):291-4 - PubMed
  17. J Am Chem Soc. 2011 Nov 2;133(43):17156-9 - PubMed
  18. Nano Lett. 2013 Aug 14;13(8):3531-8 - PubMed
  19. Phys Rev Lett. 2007 Feb 9;98(6):067401 - PubMed
  20. Nano Lett. 2013;13(12):5925-30 - PubMed
  21. Phys Rev Lett. 2004 Jun 25;92(25 Pt 1):257402 - PubMed
  22. ACS Nano. 2008 Mar;2(3):523-37 - PubMed
  23. Phys Rev Lett. 2014 Mar 21;112(11):117401 - PubMed
  24. J Phys Chem B. 2005 Aug 25;109(33):15671-4 - PubMed
  25. Nat Mater. 2006 Sep;5(9):683-96 - PubMed
  26. Nano Lett. 2013;13(12):5991-6 - PubMed
  27. Phys Rev Lett. 2011 Dec 16;107(25):257402 - PubMed
  28. Rev Sci Instrum. 2007 Oct;78(10):103108 - PubMed
  29. Sci Rep. 2014;4:3762 - PubMed
  30. Nano Lett. 2012 Nov 14;12(11):5649-53 - PubMed
  31. J Am Chem Soc. 2007 Jul 4;129(26):8058-9 - PubMed

Publication Types