Display options
Share it on

Front Plant Sci. 2015 Apr 28;6:271. doi: 10.3389/fpls.2015.00271. eCollection 2015.

Garlic (Allium sativum L.) fertility: transcriptome and proteome analyses provide insight into flower and pollen development.

Frontiers in plant science

Einat Shemesh-Mayer, Tomer Ben-Michael, Neta Rotem, Haim D Rabinowitch, Adi Doron-Faigenboim, Arkadiusz Kosmala, Dawid Perlikowski, Amir Sherman, Rina Kamenetsky

Affiliations

  1. Agricultural Research Organization, The Volcani Center, Institute of Plant Science Bet Dagan, Israel ; The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Robert H. Smith Institute of Plant Science and Genetics in Agriculture, The Hebrew University of Jerusalem Rehovot, Israel.
  2. The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Robert H. Smith Institute of Plant Science and Genetics in Agriculture, The Hebrew University of Jerusalem Rehovot, Israel.
  3. Agricultural Research Organization, The Volcani Center, Institute of Plant Science Bet Dagan, Israel.
  4. Department of Environmental Stress Biology, Institute of Plant Genetics of the Polish Academy of Sciences Poznan, Poland.

PMID: 25972879 PMCID: PMC4411974 DOI: 10.3389/fpls.2015.00271

Abstract

Commercial cultivars of garlic, a popular condiment, are sterile, making genetic studies and breeding of this plant challenging. However, recent fertility restoration has enabled advanced physiological and genetic research and hybridization in this important crop. Morphophysiological studies, combined with transcriptome and proteome analyses and quantitative PCR validation, enabled the identification of genes and specific processes involved in gametogenesis in fertile and male-sterile garlic genotypes. Both genotypes exhibit normal meiosis at early stages of anther development, but in the male-sterile plants, tapetal hypertrophy after microspore release leads to pollen degeneration. Transcriptome analysis and global gene-expression profiling showed that >16,000 genes are differentially expressed in the fertile vs. male-sterile developing flowers. Proteome analysis and quantitative comparison of 2D-gel protein maps revealed 36 significantly different protein spots, 9 of which were present only in the male-sterile genotype. Bioinformatic and quantitative PCR validation of 10 candidate genes exhibited significant expression differences between male-sterile and fertile flowers. A comparison of morphophysiological and molecular traits of fertile and male-sterile garlic flowers suggests that respiratory restrictions and/or non-regulated programmed cell death of the tapetum can lead to energy deficiency and consequent pollen abortion. Potential molecular markers for male fertility and sterility in garlic are proposed.

Keywords: energy deficiency; gene expression; microsporogenesis; mitochondrial dysfunction; protein profiling; tapetum

References

  1. Plant Cell. 1993 Oct;5(10):1217-29 - PubMed
  2. Plant Physiol. 1996 May;111(1):137-145 - PubMed
  3. Plant Cell. 2009 Feb;21(2):507-25 - PubMed
  4. Plant Cell Physiol. 2002 Nov;43(11):1285-92 - PubMed
  5. Theor Appl Genet. 1991 Oct;82(6):745-55 - PubMed
  6. Mitochondrion. 2014 Nov;19 Pt B:166-71 - PubMed
  7. J Integr Plant Biol. 2012 Feb;54(2):115-30 - PubMed
  8. Plant Physiol. 2011 Jun;156(2):615-30 - PubMed
  9. Plant Physiol. 2002 Dec;130(4):1645-56 - PubMed
  10. Planta. 2008 Apr;227(5):1013-24 - PubMed
  11. Plant Cell. 2004;16 Suppl:S46-60 - PubMed
  12. Genetics. 2003 Oct;165(2):771-9 - PubMed
  13. Genome Biol. 2010;11(10):R106 - PubMed
  14. J Proteomics. 2009 Jan 30;71(6):624-36 - PubMed
  15. Planta. 2007 Jul;226(2):311-22 - PubMed
  16. Plant Cell. 2004;16 Suppl:S142-53 - PubMed
  17. Annu Rev Plant Biol. 2014;65:579-606 - PubMed
  18. Plant Biotechnol J. 2012 Oct;10(8):925-35 - PubMed
  19. Plant Biol (Stuttg). 2009 Nov;11(6):878-85 - PubMed
  20. Plant Cell. 2003 Aug;15(8):1872-87 - PubMed
  21. Sex Plant Reprod. 2011 Mar;24(1):9-22 - PubMed
  22. Curr Opin Plant Biol. 2011 Feb;14(1):66-73 - PubMed
  23. J Exp Bot. 2009;60(5):1465-78 - PubMed
  24. Nat Protoc. 2013 Aug;8(8):1494-512 - PubMed
  25. Biochem Biophys Res Commun. 2003 Jun 27;306(2):564-9 - PubMed
  26. Mol Gen Genet. 1995 Jul 22;248(1):79-88 - PubMed
  27. Nat Rev Genet. 2008 May;9(5):383-95 - PubMed
  28. Plant Physiol. 1986 Jul;81(3):802-6 - PubMed
  29. BMC Genomics. 2013 Jan 16;14:26 - PubMed
  30. PLoS One. 2014 Oct 23;9(10):e110822 - PubMed
  31. J Exp Bot. 2013 Nov;64(16):4953-66 - PubMed
  32. Bioinformatics. 2005 Sep 15;21(18):3674-6 - PubMed
  33. Theor Appl Genet. 2009 Feb;118(3):433-41 - PubMed
  34. J Exp Bot. 2007;58(5):1133-41 - PubMed
  35. Nucleic Acids Res. 2001 May 1;29(9):e45 - PubMed
  36. Plant Cell. 2007 Nov;19(11):3549-62 - PubMed
  37. Plant Physiol. 2004 Jun;135(2):1008-19 - PubMed
  38. J Mol Biol. 1990 Oct 5;215(3):403-10 - PubMed
  39. Plant Cell Rep. 2007 Sep;26(9):1627-34 - PubMed
  40. Plant Cell. 2003 Jun;15(6):1281-95 - PubMed
  41. J Exp Bot. 2009;60(12):3595-609 - PubMed
  42. Annu Rev Genet. 1991;25:461-86 - PubMed
  43. Curr Genet. 1991 Mar;19(3):175-81 - PubMed
  44. Mol Gen Genet. 1989 Jan;215(2):332-6 - PubMed
  45. Proteomics. 2003 May;3(5):738-51 - PubMed
  46. BMC Genomics. 2010 May 28;11:338 - PubMed
  47. BMC Genomics. 2015 Jan 22;16:12 - PubMed
  48. Planta. 1998 Aug;205(4):492-505 - PubMed
  49. Genome Biol. 2009;10(3):R25 - PubMed
  50. Nature. 2001 Jan 25;409(6819):525-9 - PubMed
  51. Plant Biol (Stuttg). 2014 Mar;16(2):385-94 - PubMed
  52. J Exp Bot. 2009;60(5):1479-92 - PubMed
  53. Curr Opin Plant Biol. 2014 Feb;17:49-55 - PubMed
  54. PLoS One. 2013 Jun 04;8(6):e65209 - PubMed
  55. Theor Appl Genet. 1993 Mar;86(1):128-34 - PubMed
  56. Plant J. 1997 Sep;12(3):615-23 - PubMed
  57. Planta. 2013 Jan;237(1):103-20 - PubMed
  58. Nucleic Acids Res. 2002 May 1;30(9):e36 - PubMed
  59. Plant J. 2005 May;42(4):469-80 - PubMed
  60. Trends Genet. 2007 Oct;23(10):503-10 - PubMed
  61. Plant J. 2009 Sep;59(5):738-49 - PubMed
  62. Mol Cell Proteomics. 2014 Dec;13(12):3602-11 - PubMed
  63. Proteomics. 2001 Sep;1(9):1149-61 - PubMed
  64. C R Acad Sci III. 2001 Jun;324(6):543-50 - PubMed
  65. Plant J. 2010 Jul 1;63(1):86-99 - PubMed
  66. Theor Appl Genet. 1995 Feb;90(2):263-8 - PubMed
  67. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7213-7 - PubMed
  68. PLoS One. 2011;6(7):e21800 - PubMed
  69. Planta. 2011 May;233(5):1063-72 - PubMed

Publication Types