Display options
Share it on

Horm Mol Biol Clin Investig. 2011 Oct 01;7(2):327-36. doi: 10.1515/HMBCI.2011.123.

Regulation of the hypothalamic-pituitary-adrenal axis by neuropeptides.

Hormone molecular biology and clinical investigation

Greti Aguilera

PMID: 25961271 DOI: 10.1515/HMBCI.2011.123

Abstract

The major endocrine response to stress occurs via activation of the hypothalamic-pituitary-adrenal (HPA) axis, leading ultimately to increases in circulating glucocorticoids, which are essential for the metabolic adaptation to stress. The major players in the HPA axis are the hypothalamic neuropeptide, corticotropin releasing hormone (CRH), the pituitary hormone adrenocorticotropic hormone, and the negative feedback effects of adrenal glucocorticoids. In addition, a number of other neuropeptides, including vasopressin (VP), angiotensin II, oxytocin, pituitary adenylate cyclase activating peptide, orexin and cholecystokinin, and nesfatin can affect HPA axis activity by influencing the expression and secretion of CRH, and also by modulating pituitary corticotroph function or adrenal steroidogenesis. Of these peptides, VP co-secreted with CRH from axonal terminals in the external zone of the median eminence plays a prominent role by potentiating the stimulatory effect of CRH and by increasing the number of pituitary corticotrophs during chronic challenge. Although the precise role and significance of many of these neuropeptides in regulating HPA axis activity requires further investigation, it is likely that they are part of a multifactorial system mediating the fine tuning of HPA axis activity during adaptation to a variety of physiological and stressful conditions.

Publication Types