Display options
Share it on

Evodevo. 2015 Mar 11;6:4. doi: 10.1186/2041-9139-6-4. eCollection 2015.

Evolution of eumalacostracan development-new insights into loss and reacquisition of larval stages revealed by heterochrony analysis.

EvoDevo

Günther Joseph Jirikowski, Carsten Wolff, Stefan Richter

Affiliations

  1. Institut für Biowissenschaften, Allgemeine und Spezielle Zoologie, Universität Rostock, Universitätsplatz 2, 18055 Rostock, Germany.
  2. Institut für Biologie, Vergleichende Zoologie, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 2, 10115 Berlin, Germany.

PMID: 25973168 PMCID: PMC4429915 DOI: 10.1186/2041-9139-6-4

Abstract

BACKGROUND: Within Malacostraca (Crustacea), direct development and development through diverse forms of larvae are found. Recent investigations suggest that larva-related developmental features have undergone heterochronic evolution in Malacostraca. In the light of current phylogenetic hypotheses, the free-swimming nauplius larva was lost in the lineage leading to Malacostraca and evolved convergently in the malacostracan groups Dendrobranchiata and Euphausiacea. Here we reconstruct the evolutionary history of eumalacostracan (Malacostraca without Phyllocarida) development with regard to early appendage morphogenesis, muscle and central nervous system development, and determine the heterochronic transformations involved in changes of ontogenetic mode.

RESULTS: Timing of 33 developmental events from the different tissues was analyzed for six eumalacostracan species (material for Euphausiacea was not available) and one outgroup, using a modified version of Parsimov-based genetic inference (PGi). Our results confirm previous suggestions that the event sequence of nauplius larva development is partly retained in embryogenesis of those species which do not develop such a larva. The ontogenetic mode involving a nauplius larva was likely replaced by direct development in the malacostracan stem lineage. Secondary evolution of the nauplius larva of Dendrobranchiata from this ancestral condition, involved only a very small number of heterochronies, despite the drastic change of life history. In the lineage leading to Peracarida, timing patterns of nauplius-related development were lost. Throughout eumalacostracan evolution, events related to epidermal and neural tissue development were clearly less affected by heterochrony than events related to muscle development.

CONCLUSIONS: Weak integration between mesodermal and ectodermal development may have allowed timing in muscle formation to be altered independently of ectodermal development. We conclude that heterochrony in muscle development played a crucial role in evolutionary loss and secondary evolution of a nauplius larva in Malacostraca.

Keywords: Heterochrony; Larval development; Malacostraca; Muscle development; Nauplius Larva, Egg Nauplius; Phylogeny

References

  1. Syst Biol. 1997 Mar;46(1):204-10 - PubMed
  2. J Neurobiol. 2002 Aug;52(2):117-32 - PubMed
  3. Evol Dev. 2002 Jul-Aug;4(4):292-302 - PubMed
  4. Bioinformatics. 2004 Jan 22;20(2):289-90 - PubMed
  5. Evol Dev. 2004 Jan-Feb;6(1):50-7 - PubMed
  6. Genesis. 2005 Jul;42(3):124-49 - PubMed
  7. Syst Biol. 2005 Apr;54(2):230-40 - PubMed
  8. Evol Dev. 2005 Nov-Dec;7(6):515-27 - PubMed
  9. Dev Genes Evol. 2006 Apr;216(4):169-84 - PubMed
  10. Dev Genes Evol. 2006 Apr;216(4):209-23 - PubMed
  11. Evol Dev. 2006 Nov-Dec;8(6):537-49 - PubMed
  12. Evol Dev. 2007 Mar-Apr;9(2):122-30 - PubMed
  13. BMC Evol Biol. 2007 Oct 01;7:182 - PubMed
  14. Syst Biol. 2008 Jun;57(3):378-87 - PubMed
  15. Evol Dev. 2008 Sep-Oct;10(5):519-30 - PubMed
  16. Genes Dev. 1991 Sep;5(9):1577-88 - PubMed
  17. Arthropod Struct Dev. 2009 May;38(3):235-46 - PubMed
  18. BMC Evol Biol. 2009 Jan 27;9:21 - PubMed
  19. Evol Dev. 2009 Mar-Apr;11(2):170-90 - PubMed
  20. Evolution. 2009 Aug;63(8):2193-200 - PubMed
  21. Dev Genes Evol. 2009 Dec;219(11-12):545-64 - PubMed
  22. Zoology (Jena). 2010 Jan;113(1):57-66 - PubMed
  23. Dev Genes Evol. 2010 Sep;220(3-4):89-105 - PubMed
  24. Front Zool. 2010 Nov 09;7:29 - PubMed
  25. Integr Zool. 2011 Mar;6(1):28-44 - PubMed
  26. Dev Biol. 2012 Jan 15;361(2):427-38 - PubMed
  27. Mol Biol Evol. 2012 Mar;29(3):1031-45 - PubMed
  28. Dev Genes Evol. 2013 Jul;223(4):247-51 - PubMed
  29. Front Zool. 2013 Jun 19;10(1):35 - PubMed
  30. Evol Dev. 2013 Sep-Oct;15(5):344-64 - PubMed
  31. Front Zool. 2013 Dec 11;10(1):76 - PubMed
  32. Roux Arch Dev Biol. 1992 Dec;202(1):36-48 - PubMed
  33. Int J Dev Biol. 1996 Feb;40(1):211-20 - PubMed

Publication Types