Display options
Share it on

Nat Commun. 2015 Jun 11;6:7336. doi: 10.1038/ncomms8336.

Coherence in the presence of absorption and heating in a molecule interferometer.

Nature communications

J P Cotter, S Eibenberger, L Mairhofer, X Cheng, P Asenbaum, M Arndt, K Walter, S Nimmrichter, K Hornberger

Affiliations

  1. University of Vienna, Faculty of Physics, VCQ &QuNaBioS, Boltzmanngasse 5, A-1090 Vienna, Austria.
  2. University of Duisburg-Essen, Faculty of Physics, Lotharstraße 1-21, 47048 Duisburg, Germany.

PMID: 26066053 PMCID: PMC4477035 DOI: 10.1038/ncomms8336

Abstract

Matter-wave interferometry can be used to probe the foundations of physics and to enable precise measurements of particle properties and fundamental constants. It relies on beam splitters that coherently divide the wave function. In atom interferometers, such elements are often realised using lasers by exploiting the dipole interaction or through photon absorption. It is intriguing to extend these ideas to complex molecules where the energy of an absorbed photon can rapidly be redistributed across many internal degrees of freedom. Here, we provide evidence that center-of-mass coherence can be maintained even when the internal energy and entropy of the interfering particle are substantially increased by absorption of photons from a standing light wave. Each photon correlates the molecular center-of-mass wave function with its internal temperature and splits it into a superposition with opposite momenta in addition to the beam-splitting action of the optical dipole potential.

References

  1. Phys Rev Lett. 1986 Feb 24;56(8):827-830 - PubMed
  2. Phys Rev Lett. 1994 Aug 29;73(9):1223-1226 - PubMed
  3. Nature. 2004 Feb 19;427(6976):711-4 - PubMed
  4. Phys Rev Lett. 2008 May 9;100(18):180405 - PubMed
  5. Phys Rev Lett. 2009 Jun 19;102(24):240402 - PubMed
  6. Phys Rev A. 1993 Aug;48(2):1687-1690 - PubMed
  7. Nanotechnology. 2012 Feb 17;23(6):065501 - PubMed
  8. Nat Phys. 2013 Mar 1;9(3):144-148 - PubMed
  9. Phys Rev Lett. 2014 Dec 5;113(23):233001 - PubMed
  10. Phys Rev Lett. 1995 Nov 20;75(21):3783-3787 - PubMed
  11. Phys Rev Lett. 2001 Mar 12;86(11):2191-5 - PubMed
  12. Phys Rev Lett. 2013 Apr 19;110(16):160403 - PubMed
  13. Phys Rev Lett. 2004 Dec 10;93(24):240404 - PubMed
  14. Phys Rev Lett. 2001 Oct 15;87(16):160401 - PubMed
  15. Phys Chem Chem Phys. 2013 Sep 21;15(35):14696-700 - PubMed
  16. Phys Rev Lett. 1991 May 27;66(21):2693-2696 - PubMed
  17. Phys Rev Lett. 1995 Oct 2;75(14):2633-2637 - PubMed
  18. Phys Rev Lett. 1991 May 27;66(21):2689-2692 - PubMed
  19. Phys Rev Lett. 2011 May 6;106(18):180403 - PubMed
  20. Phys Rev Lett. 1991 Jul 8;67(2):181-184 - PubMed
  21. Phys Rev Lett. 2014 Jun 27;112(25):250402 - PubMed
  22. Phys Rev Lett. 2002 Mar 11;88(10):100404 - PubMed

Publication Types

Grant support