Display options
Share it on

Front Microbiol. 2015 May 08;6:381. doi: 10.3389/fmicb.2015.00381. eCollection 2015.

Multidimensional metrics for estimating phage abundance, distribution, gene density, and sequence coverage in metagenomes.

Frontiers in microbiology

Ramy K Aziz, Bhakti Dwivedi, Sajia Akhter, Mya Breitbart, Robert A Edwards

Affiliations

  1. Department of Computer Science, San Diego State University San Diego, CA, USA ; Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University Cairo, Egypt ; Computing, Environment, and Life Sciences, Argonne National Laboratory Argonne, IL, USA.
  2. College of Marine Science, University of South Florida St. Petersburg St. Petersburg, FL, USA.
  3. Department of Computer Science, San Diego State University San Diego, CA, USA.
  4. Department of Computer Science, San Diego State University San Diego, CA, USA ; Computing, Environment, and Life Sciences, Argonne National Laboratory Argonne, IL, USA.

PMID: 26005436 PMCID: PMC4424905 DOI: 10.3389/fmicb.2015.00381

Abstract

Phages are the most abundant biological entities on Earth and play major ecological roles, yet the current sequenced phage genomes do not adequately represent their diversity, and little is known about the abundance and distribution of these sequenced genomes in nature. Although the study of phage ecology has benefited tremendously from the emergence of metagenomic sequencing, a systematic survey of phage genes and genomes in various ecosystems is still lacking, and fundamental questions about phage biology, lifestyle, and ecology remain unanswered. To address these questions and improve comparative analysis of phages in different metagenomes, we screened a core set of publicly available metagenomic samples for sequences related to completely sequenced phages using the web tool, Phage Eco-Locator. We then adopted and deployed an array of mathematical and statistical metrics for a multidimensional estimation of the abundance and distribution of phage genes and genomes in various ecosystems. Experiments using those metrics individually showed their usefulness in emphasizing the pervasive, yet uneven, distribution of known phage sequences in environmental metagenomes. Using these metrics in combination allowed us to resolve phage genomes into clusters that correlated with their genotypes and taxonomic classes as well as their ecological properties. We propose adding this set of metrics to current metaviromic analysis pipelines, where they can provide insight regarding phage mosaicism, habitat specificity, and evolution.

Keywords: bacteriophage; ecology; genomics; metagenomics; virus

References

  1. Nature. 1989 Aug 10;340(6233):467-8 - PubMed
  2. Nature. 2008 Apr 3;452(7187):629-32 - PubMed
  3. Front Microbiol. 2013 Dec 24;4:404 - PubMed
  4. ISME J. 2011 Apr;5(4):639-49 - PubMed
  5. ISME J. 2011 May;5(5):822-30 - PubMed
  6. PLoS One. 2011 Mar 09;6(3):e17288 - PubMed
  7. PLoS Biol. 2006 Nov;4(11):e368 - PubMed
  8. Science. 2009 Nov 6;326(5954):858-61 - PubMed
  9. Nat Commun. 2014 Jul 24;5:4498 - PubMed
  10. ISME J. 2010 Jun;4(6):739-51 - PubMed
  11. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6578-83 - PubMed
  12. BMC Bioinformatics. 2010 Jun 23;11:341 - PubMed
  13. ISME J. 2012 Feb;6(2):471-4 - PubMed
  14. PeerJ. 2014 Jun 05;2:e425 - PubMed
  15. Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14250-5 - PubMed
  16. Bioinformatics. 2011 Nov 1;27(21):3074-5 - PubMed
  17. Environ Microbiol. 2012 Aug;14(8):2113-26 - PubMed
  18. BMC Bioinformatics. 2005 Mar 02;6:41 - PubMed
  19. Microbiol Mol Biol Rev. 2000 Mar;64(1):69-114 - PubMed
  20. Ann Rev Mar Sci. 2012;4:425-48 - PubMed
  21. Biotechniques. 2005 Nov;39(5):729-36 - PubMed
  22. PLoS One. 2011 Feb 24;6(2):e16900 - PubMed
  23. Nature. 2008 Mar 20;452(7185):340-3 - PubMed
  24. Nature. 2013 Feb 21;494(7437):357-60 - PubMed
  25. Nat Rev Microbiol. 2005 Jun;3(6):504-10 - PubMed
  26. Nucleic Acids Res. 2011 Jan;39(2):e9 - PubMed
  27. BMC Bioinformatics. 2008 Sep 19;9:386 - PubMed
  28. Bioinformatics. 2011 Mar 15;27(6):863-4 - PubMed
  29. Mol Biol Evol. 2008 Apr;25(4):762-77 - PubMed
  30. Environ Microbiol. 2009 Aug;11(8):2148-63 - PubMed
  31. Adv Appl Microbiol. 2009;67:1-45 - PubMed
  32. PLoS Comput Biol. 2009 Dec;5(12):e1000593 - PubMed
  33. Appl Environ Microbiol. 2005 Jun;71(6):3119-25 - PubMed
  34. Front Microbiol. 2014 Feb 03;5:27 - PubMed
  35. ISME J. 2014 May;8(5):1079-88 - PubMed
  36. J Bacteriol. 2002 Aug;184(16):4529-35 - PubMed
  37. BMC Genomics. 2009 Dec 01;10:570 - PubMed
  38. J Comput Biol. 2010 Sep;17(9):1315-26 - PubMed
  39. FEMS Microbiol Rev. 2004 May;28(2):127-81 - PubMed
  40. Curr Opin Microbiol. 2009 Oct;12(5):582-7 - PubMed
  41. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 - PubMed
  42. PLoS Genet. 2013;9(12):e1003987 - PubMed
  43. J Bacteriol. 2003 Oct;185(20):6220-3 - PubMed
  44. Appl Environ Microbiol. 2011 Nov;77(21):7663-8 - PubMed
  45. PLoS One. 2009 Oct 09;4(10):e7370 - PubMed

Publication Types