Display options
Share it on

Physiol Rep. 2015 Jun;3(6). doi: 10.14814/phy2.12415.

Insulin-resistant subjects have normal angiogenic response to aerobic exercise training in skeletal muscle, but not in adipose tissue.

Physiological reports

R Grace Walton, Brian S Finlin, Jyothi Mula, Douglas E Long, Beibei Zhu, Christopher S Fry, Philip M Westgate, Jonah D Lee, Tamara Bennett, Philip A Kern, Charlotte A Peterson

Affiliations

  1. College of Health Sciences, University of Kentucky, Lexington, Kentucky.
  2. The Department of Medicine, Division of Endocrinology, and the Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, Kentucky.
  3. Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, Kentucky.
  4. Division of Physician Assistant Studies, College of Health Sciences, University of Kentucky, Lexington, Kentucky.
  5. College of Health Sciences, University of Kentucky, Lexington, Kentucky [email protected].

PMID: 26038468 PMCID: PMC4510621 DOI: 10.14814/phy2.12415

Abstract

Reduced vessel density in adipose tissue and skeletal muscle is associated with obesity and may result in decreased perfusion, decreased oxygen consumption, and insulin resistance. In the presence of VEGFA, Angiopoietin-2 (Angpt2) and Angiopoietin-1 (Angpt1) are central determinants of angiogenesis, with greater Angpt2:Angpt1 ratios promoting angiogenesis. In skeletal muscle, exercise training stimulates angiogenesis and modulates transcription of VEGFA, Angpt1, and Angpt2. However, it remains unknown whether exercise training stimulates vessel growth in human adipose tissue, and it remains unknown whether adipose angiogenesis is mediated by angiopoietin signaling. We sought to determine whether insulin-resistant subjects would display an impaired angiogenic response to aerobic exercise training. Insulin-sensitive (IS, N = 12) and insulin-resistant (IR, N = 14) subjects had subcutaneous adipose and muscle (vastus lateralis) biopsies before and after 12 weeks of cycle ergometer training. In both tissues, we measured vessels and expression of pro-angiogenic genes. Exercise training did not increase insulin sensitivity in IR Subjects. In skeletal muscle, training resulted in increased vessels/muscle fiber and increased Angpt2:Angpt1 ratio in both IR and IS subjects. However, in adipose, exercise training only induced angiogenesis in IS subjects, likely due to chronic suppression of VEGFA expression in IR subjects. These results indicate that skeletal muscle of IR subjects exhibits a normal angiogenic response to exercise training. However, the same training regimen is insufficient to induce angiogenesis in adipose tissue of IR subjects, which may help to explain why we did not observe improved insulin sensitivity following aerobic training.

© 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

Keywords: Angiogenesis; angiopoietins; exercise; insulin resistance

References

  1. Nat Biotechnol. 2008 Mar;26(3):317-25 - PubMed
  2. Diabetes. 2002 Aug;51(8):2467-73 - PubMed
  3. J Appl Physiol (1985). 2005 Jan;98(1):315-21 - PubMed
  4. Eur J Endocrinol. 2004 Feb;150(2):207-14 - PubMed
  5. J Biol Chem. 1995 Jun 2;270(22):13333-40 - PubMed
  6. Biochem Soc Trans. 2011 Dec;39(6):1628-32 - PubMed
  7. J Clin Endocrinol Metab. 2011 May;96(5):1377-84 - PubMed
  8. Acta Med Scand. 1988;223(4):365-73 - PubMed
  9. Diabetes. 2006 May;55(5):1436-42 - PubMed
  10. Microcirculation. 2011 Jan;18(1):74-84 - PubMed
  11. J Sports Sci Med. 2010 Sep 01;9(3):405-10 - PubMed
  12. J Appl Physiol (1985). 2011 Mar;110(3):746-55 - PubMed
  13. Diabetes. 2012 Jul;61(7):1801-13 - PubMed
  14. Cell Metab. 2013 Jan 8;17(1):61-72 - PubMed
  15. Diabetologia. 2012 Oct;55(10):2794-9 - PubMed
  16. Acta Neuropathol. 2012 Apr;123(4):615-26 - PubMed
  17. Eur J Clin Invest. 1983 Feb;13(1):5-12 - PubMed
  18. J Clin Invest. 1987 Aug;80(2):415-24 - PubMed
  19. Am J Physiol Endocrinol Metab. 2008 Oct;295(4):E732-50 - PubMed
  20. BMC Biol. 2005 Sep 02;3:19 - PubMed
  21. Diabetes. 2009 Mar;58(3):718-25 - PubMed
  22. Eur J Appl Physiol Occup Physiol. 1984;52(4):355-61 - PubMed
  23. Clin Cancer Res. 2015 May 15;21(10):2367-78 - PubMed
  24. Comput Methods Programs Biomed. 1986 Oct;23(2):113-22 - PubMed
  25. Obesity (Silver Spring). 2013 Mar;21(3):454-60 - PubMed
  26. Eur J Clin Invest. 2003 Feb;33(2):141-6 - PubMed
  27. Diabetes Care. 2014 May;37(5):1469-75 - PubMed
  28. Diabetologia. 2005 Feb;48(2):345-50 - PubMed
  29. Int J Sports Med. 2012 Mar;33(3):218-23 - PubMed
  30. PLoS One. 2014 Jul 10;9(7):e102190 - PubMed
  31. J Clin Endocrinol Metab. 2011 Dec;96(12):E1990-8 - PubMed
  32. Diabetes. 2002 Sep;51(9):2742-8 - PubMed
  33. J Appl Physiol (1985). 2012 Oct;113(7):1128-40 - PubMed
  34. J Physiol. 2014 Jun 15;592(12):2625-35 - PubMed
  35. Pflugers Arch. 1983 Jun 1;397(4):277-83 - PubMed
  36. Microcirculation. 2007 Jun-Jul;14(4-5):289-98 - PubMed
  37. Cancer Lett. 2013 Jan 1;328(1):18-26 - PubMed
  38. Eur J Appl Physiol. 2005 Aug;94(5-6):558-68 - PubMed
  39. Diabetologia. 1996 Jul;39(7):813-22 - PubMed
  40. J Clin Endocrinol Metab. 1999 Nov;84(11):4185-90 - PubMed
  41. Diabetes Metab Rev. 1989 Aug;5(5):411-29 - PubMed
  42. Diabetes. 1997 Nov;46(11):1822-8 - PubMed
  43. Metabolism. 2003 May;52(5):540-6 - PubMed
  44. Cell Metab. 2013 Oct 1;18(4):470-7 - PubMed
  45. Eur J Appl Physiol. 2004 Dec;93(3):353-8 - PubMed
  46. Med Sci Sports Exerc. 2003 Aug;35(8):1381-95 - PubMed
  47. Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5874-9 - PubMed
  48. J Clin Oncol. 2012 Feb 1;30(4):441-4 - PubMed
  49. Diabetes Care. 1999 Aug;22(8):1330-8 - PubMed
  50. J Appl Physiol (1985). 2007 Sep;103(3):1012-20 - PubMed

Publication Types

Grant support