Display options
Share it on

PeerJ. 2015 May 26;3:e977. doi: 10.7717/peerj.977. eCollection 2015.

Evolution of heritable behavioural differences in a model of social division of labour.

PeerJ

Zsóka Vásárhelyi, Géza Meszéna, István Scheuring

Affiliations

  1. Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University , Budapest , Hungary.
  2. Department of Biological Physics, Eötvös Loránd University , Budapest , Hungary.
  3. MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Eötvös Loránd University and the Hungarian Academy of Sciences , Budapest , Hungary.

PMID: 26038732 PMCID: PMC4451027 DOI: 10.7717/peerj.977

Abstract

The spectacular diversity of personality and behaviour of animals and humans has evoked many hypotheses intended to explain its developmental and evolutionary background. Although the list of the possible contributing mechanisms seems long, we propose that an underemphasised explanation is the division of labour creating negative frequency dependent selection. We use analytical and numerical models of social division of labour to show how selection can create consistent and heritable behavioural differences in a population, where randomly sampled individuals solve a collective task together. We assume that the collective task needs collaboration of individuals performing one of the two possible subtasks. The total benefit of the group is highest when the ratio of different subtasks is closest to 1. The probability of choosing one of the two costly subtasks and the costs assigned to them are under selection. By using adaptive dynamics we show that if a trade-off between the costs of the subtasks is strong enough, then evolution leads to coexistence of specialized individuals performing one of the subtasks with high probability and low cost. Our analytical results were verified and extended by numerical simulations.

Keywords: Adaptive dynamics; Behavioural syndrome; Cooperation; Division of labour; Personality; Specialization

References

  1. J Math Biol. 2002 Jun;44(6):548-60 - PubMed
  2. Am Psychol. 2006 Sep;61(6):622-31 - PubMed
  3. Trends Ecol Evol. 2010 Sep;25(9):504-11 - PubMed
  4. PLoS One. 2012;7(8):e43979 - PubMed
  5. Am Nat. 2014 Jun;183(6):747-61 - PubMed
  6. Proc Biol Sci. 2004 Apr 22;271(1541):847-52 - PubMed
  7. J Theor Biol. 2006 Mar 21;239(2):257-72 - PubMed
  8. Hum Nat. 2002 Mar;13(1):27-46 - PubMed
  9. PLoS Comput Biol. 2014 Dec 04;10(12):e1003936 - PubMed
  10. Parasitol Res. 2014 Jul;113(7):2593-602 - PubMed
  11. Proc Biol Sci. 2013 Jul 31;280(1767):20131407 - PubMed
  12. PLoS Comput Biol. 2010 Jun 10;6(6):e1000805 - PubMed
  13. Hum Nat. 2009 Jun;20(2):151-83 - PubMed
  14. Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13686-91 - PubMed
  15. Nature. 2007 May 31;447(7144):581-4 - PubMed
  16. Proc Biol Sci. 2012 Jan 7;279(1726):116-21 - PubMed
  17. Integr Comp Biol. 2003 Feb;43(1):82-6 - PubMed
  18. Proc Natl Acad Sci U S A. 2014 Jul 1;111(26):9533-7 - PubMed
  19. J Theor Biol. 2014 May 7;348:65-79 - PubMed
  20. Am Nat. 2005 Jun;165(6):669-81 - PubMed
  21. Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):E326-35 - PubMed
  22. Philos Trans R Soc Lond B Biol Sci. 2013 Apr 08;368(1618):20120343 - PubMed
  23. Nat Rev Microbiol. 2014 Apr;12(4):263-73 - PubMed
  24. J Math Biol. 2005 Jan;50(1):67-82 - PubMed
  25. Phys Rev Lett. 2005 Aug 12;95(7):078105 - PubMed

Publication Types