Display options
Share it on

Sci Rep. 2015 Jun 11;5:10317. doi: 10.1038/srep10317.

A posteriori correction of camera characteristics from large image data sets.

Scientific reports

Pavel Afanasyev, Raimond B G Ravelli, Rishi Matadeen, Sacha De Carlo, Gijs van Duinen, Bart Alewijnse, Peter J Peters, Jan-Pieter Abrahams, Rodrigo V Portugal, Michael Schatz, Marin van Heel

Affiliations

  1. 1] Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands [2] The Institute of Nanoscopy, Maastricht University, 6211 LK Maastricht, The Netherlands.
  2. The Institute of Nanoscopy, Maastricht University, 6211 LK Maastricht, The Netherlands.
  3. Netherlands Centre for Electron Nanoscopy (NeCEN), 2333 CC Leiden, The Netherlands.
  4. 1] Netherlands Centre for Electron Nanoscopy (NeCEN), 2333 CC Leiden, The Netherlands [2] FEI Company, 5651 GG Eindhoven, The Netherlands.
  5. FEI Company, 5651 GG Eindhoven, The Netherlands.
  6. Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands.
  7. Brazilian Nanotechnology National Laboratory - LNNano, CNPEM, C.P. 6192, 13083-970 Campinas SP, Brasil.
  8. Image Science Software GmbH, Gillweg 3, D-14193 Berlin, Germany.
  9. 1] Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands [2] Brazilian Nanotechnology National Laboratory - LNNano, CNPEM, C.P. 6192, 13083-970 Campinas SP, Brasil [3] Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK.

PMID: 26068909 PMCID: PMC4464200 DOI: 10.1038/srep10317

Abstract

Large datasets are emerging in many fields of image processing including: electron microscopy, light microscopy, medical X-ray imaging, astronomy, etc. Novel computer-controlled instrumentation facilitates the collection of very large datasets containing thousands of individual digital images. In single-particle cryogenic electron microscopy ("cryo-EM"), for example, large datasets are required for achieving quasi-atomic resolution structures of biological complexes. Based on the collected data alone, large datasets allow us to precisely determine the statistical properties of the imaging sensor on a pixel-by-pixel basis, independent of any "a priori" normalization routinely applied to the raw image data during collection ("flat field correction"). Our straightforward "a posteriori" correction yields clean linear images as can be verified by Fourier Ring Correlation (FRC), illustrating the statistical independence of the corrected images over all spatial frequencies. The image sensor characteristics can also be measured continuously and used for correcting upcoming images.

References

  1. Science. 2014 Mar 28;343(6178):1485-9 - PubMed
  2. J Microsc. 1982 Aug;127(Pt 2):127-38 - PubMed
  3. Nat Methods. 2013 Jun;10(6):584-90 - PubMed
  4. Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):97-109 - PubMed
  5. Science. 2012 May 25;336(6084):1030-3 - PubMed
  6. Ultramicroscopy. 1984;13(3):241-52 - PubMed
  7. Structure. 2012 Nov 7;20(11):1823-8 - PubMed
  8. Nat Methods. 2013 Jun;10(6):557-62 - PubMed
  9. Science. 2014 Mar 28;343(6178):1443-4 - PubMed
  10. Ultramicroscopy. 2011 Nov;111(11):1592-8 - PubMed
  11. Nature. 2008 May 15;453(7193):415-9 - PubMed
  12. Methods Cell Biol. 1989;29:291-313 - PubMed
  13. J Struct Biol. 2005 Sep;151(3):250-62 - PubMed
  14. J Struct Biol. 2013 Sep;183(3):363-7 - PubMed
  15. J Struct Biol. 1996 Jan-Feb;116(1):17-24 - PubMed
  16. Opt Express. 2011 Oct 24;19(22):21333-44 - PubMed
  17. Elife. 2013;2:e00461 - PubMed
  18. J Struct Biol. 2012 Mar;177(3):630-7 - PubMed

Publication Types

Grant support