Display options
Share it on

Cancer Nanotechnol. 2010;1(1):35-46. doi: 10.1007/s12645-010-0005-1. Epub 2010 Sep 07.

Thermo-optical analysis and selection of the properties of absorbing nanoparticles for laser applications in cancer nanotechnology.

Cancer nanotechnology

Victor K Pustovalov, L G Astafyeva, E Galanzha, V P Zharov

Affiliations

  1. Belarusian National Technical University, pr. Independence 65, 220013 Minsk, Belarus.
  2. Stepanov Institute of Physics, National Academy of Sciences of Belarus, pr. Independence 68, 220072 Minsk, Belarus.
  3. Philips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205 USA.

PMID: 26069478 PMCID: PMC4451507 DOI: 10.1007/s12645-010-0005-1

Abstract

Applications of nanoparticles (NPs) as photothermal (PT) and photoacoustic (PA) labels and agents for diagnosis and therapy of cancer and other diseases in laser medicine are fast growing areas of research. Many potential benefits include possibility for imaging with higher resolution and treatment of deeper tissues containing NPs, killing of individual abnormal cells, etc. Nevertheless, despite successful results, there is a lack of focused analysis of requirements to NPs for optimization of PT/PA applications, especially with pulsed lasers. Here, we present a platform for analysis of NP properties (e.g., optical, thermal, acoustic, structural, and geometric), allowing to select their parameters in the presence of different ambient tissues. The several types of NPs are described, which provide significant increased conversion of laser pulse energy in PT/PA phenomena. These NPs make it possible to use them with maximal efficiency for detection and killing single malignant cells labeled with minimal amount of NPs and in laser nanomedicine.

Keywords: Analysis; Cancer; Laser; Nanoparticle; Optimization; Properties

References

  1. Nanomedicine. 2005 Dec;1(4):326-45 - PubMed
  2. Nanotechnology. 2009 Jun 3;20(22):225105 - PubMed
  3. Lasers Surg Med. 2005 Sep;37(3):219-26 - PubMed
  4. Nano Lett. 2007 Jul;7(7):1914-8 - PubMed
  5. Appl Opt. 1985 Jul 1;24(13):1960 - PubMed
  6. Trends Biotechnol. 2006 Feb;24(2):62-7 - PubMed
  7. Biophys J. 2003 Jun;84(6):4023-32 - PubMed
  8. Lasers Surg Med. 2007 Aug;39(7):622-34 - PubMed
  9. Appl Opt. 1976 Aug 1;15(8):1996-9 - PubMed
  10. Biopolymers. 2001;62(2):122-8 - PubMed
  11. Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13549-54 - PubMed
  12. Nano Lett. 2007 May;7(5):1318-22 - PubMed
  13. Biophys J. 2006 Jan 15;90(2):619-27 - PubMed
  14. Nano Lett. 2006 Apr;6(4):587-91 - PubMed
  15. J Am Chem Soc. 2006 Feb 15;128(6):2115-20 - PubMed
  16. Science. 1983 Apr 29;220(4596):524-7 - PubMed
  17. Lasers Med Sci. 2008 Jul;23(3):217-28 - PubMed
  18. Nanomedicine (Lond). 2006 Dec;1(4):473-80 - PubMed
  19. J Biomed Opt. 2007 Sep-Oct;12(5):051503 - PubMed
  20. J Phys Chem B. 2006 Apr 13;110(14):7238-48 - PubMed
  21. Ann Biomed Eng. 2006 Jan;34(1):15-22 - PubMed

Publication Types

Grant support