Display options
Share it on

Cartilage. 2010 Jul;1(3):200-10. doi: 10.1177/1947603510361238.

Elevated Levels of Cartilage Oligomeric Matrix Protein during In Vitro Cartilage Matrix Generation Decrease Collagen Fibril Diameter.

Cartilage

Y M Bastiaansen-Jenniskens, A C W de Bart, W Koevoet, K M B Jansen, J A N Verhaar, G J V M van Osch, J DeGroot

Affiliations

  1. Business Unit BioSciences, TNO Quality of Life, Leiden, the Netherlands ; Department of Orthopaedics, University Medical Center Rotterdam, Erasmus Medical Center, Rotterdam, the Netherlands.
  2. Business Unit BioSciences, TNO Quality of Life, Leiden, the Netherlands.
  3. Department of Otorhinolaryngology, University Medical Center Rotterdam, Erasmus Medical Center, Rotterdam, the Netherlands.
  4. Department of Precision and Microsystems Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, the Netherlands.
  5. Department of Orthopaedics, University Medical Center Rotterdam, Erasmus Medical Center, Rotterdam, the Netherlands.
  6. Department of Orthopaedics, University Medical Center Rotterdam, Erasmus Medical Center, Rotterdam, the Netherlands ; Department of Otorhinolaryngology, University Medical Center Rotterdam, Erasmus Medical Center, Rotterdam, the Netherlands.

PMID: 26069552 PMCID: PMC4297071 DOI: 10.1177/1947603510361238

Abstract

Cartilage oligomeric matrix protein (COMP) is a protein present in the cartilage matrix and is expressed more abundantly in osteoarthritis cartilage than in healthy cartilage. The present study was designed to investigate the effect of transforming growth factor β (TGFβ) on COMP deposition and the influence of COMP on collagen biochemistry in a long-term 3-dimensional culture. Bovine chondrocytes in alginate beads were cultured with or without 25 ng/mL TGFβ2 for 21 or 35 days. COMP was overexpressed in bovine chondrocytes using lentiviral transfection. COMP gene expression, COMP protein production, collagen and proteoglycan deposition, and collagen fibril thickness were determined. Addition of TGFβ2 resulted in more COMP mRNA and protein than the control condition without growth factors. Lentiviral transduction with COMP resulted in elevated gene expression of COMP and increased COMP levels in the alginate bead and culture medium compared to untransfected cells. Overexpression of COMP did not affect the deposition of collagen, collagen cross-linking, proteoglycan deposition, or the mechanical properties. Stimulating COMP production by either TGFβ2 or lentivirus resulted in collagen fibrils with a smaller diameter. Taken together, COMP deposition can be modulated in cartilage matrix production by the addition of growth factors or by overexpression of COMP. Inducing COMP protein expression resulted in collagen fibrils with a smaller diameter. Because it has been demonstrated that the collagen fibril diameter is associated with mechanical functioning of the matrix, modulating COMP levels should be taken into account in cartilage regeneration strategies.

Keywords: cartilage matrix; cartilage oligomeric matrix protein; chondrocyte; lentivirus; transforming growth factor β

References

  1. Arthritis Rheum. 2000 Aug;43(8):1742-8 - PubMed
  2. J Biol Chem. 1998 Aug 7;273(32):20397-403 - PubMed
  3. J Biol Chem. 2004 Jun 11;279(24):25294-8 - PubMed
  4. J Rheumatol. 1992 Jan;19(1):123-9 - PubMed
  5. J Cell Sci. 1994 Jan;107 ( Pt 1):17-27 - PubMed
  6. Biochem Biophys Res Commun. 2009 Feb 6;379(2):222-6 - PubMed
  7. J Orthop Res. 1996 Nov;14(6):946-55 - PubMed
  8. Clin Rheumatol. 2005 Jun;24(3):278-84 - PubMed
  9. J Orthop Res. 2000 Jan;18(1):68-77 - PubMed
  10. Biochim Biophys Acta. 2005 Jun 30;1741(1-2):95-102 - PubMed
  11. Matrix Biol. 2004 Oct;23(6):381-91 - PubMed
  12. J Biol Chem. 2007 Aug 24;282(34):24591-8 - PubMed
  13. J Clin Invest. 1998 Dec 15;102(12):2115-25 - PubMed
  14. Matrix Biol. 1997 Nov;16(5):255-71 - PubMed
  15. Tissue Eng Part A. 2008 Jun;14(6):1059-66 - PubMed
  16. Anal Biochem. 1996 Dec 1;243(1):189-91 - PubMed
  17. Biophys Chem. 1988 Feb;29(1-2):195-209 - PubMed
  18. Osteoarthritis Cartilage. 2006 Nov;14(11):1136-46 - PubMed
  19. J Biol Chem. 1992 Nov 5;267(31):22346-50 - PubMed
  20. J Biol Chem. 2005 Sep 23;280(38):32655-61 - PubMed
  21. J Biol Chem. 2007 Oct 26;282(43):31166-73 - PubMed
  22. Osteoarthritis Cartilage. 1998 Nov;6(6):435-40 - PubMed
  23. Mol Cell Biol. 2005 Dec;25(23):10465-78 - PubMed
  24. Arthritis Rheum. 2004 Aug;50(8):2479-88 - PubMed
  25. Matrix Biol. 1995 Dec;14(9):773-81 - PubMed
  26. Matrix Biol. 2005 Jan;23(8):525-33 - PubMed
  27. Osteoarthritis Cartilage. 2008 Mar;16(3):359-66 - PubMed
  28. Biochim Biophys Acta. 2002 Feb 15;1570(1):1-8 - PubMed
  29. Osteoarthritis Cartilage. 2007 Jun;15(6):597-604 - PubMed
  30. Am J Pathol. 2006 Jan;168(1):131-40 - PubMed
  31. Matrix Biol. 2005 Aug;24(5):376-85 - PubMed
  32. Anal Biochem. 1996 Sep 5;240(2):167-76 - PubMed
  33. Osteoarthritis Cartilage. 2002 Sep;10 (9):707-13 - PubMed
  34. Osteoarthritis Cartilage. 1998 May;6(3):187-95 - PubMed
  35. J Biomech. 1984;17(5):377-94 - PubMed
  36. Mech Ageing Dev. 1998 Dec 1;106(1-2):1-56 - PubMed
  37. J Biol Chem. 1992 Mar 25;267(9):6132-6 - PubMed
  38. J Biol Chem. 2001 Mar 2;276(9):6083-92 - PubMed
  39. Arthritis Res Ther. 2006;8(3):R56 - PubMed
  40. Nat Genet. 1995 Jul;10 (3):330-6 - PubMed
  41. Arthritis Rheum. 1998 Jun;41(6):997-1006 - PubMed
  42. Mol Cell Biol. 2002 Jun;22(12):4366-71 - PubMed
  43. J Orthop Res. 2001 May;19(3):493-9 - PubMed
  44. J Biol Chem. 2006 Oct 27;281(43):32587-95 - PubMed

Publication Types