Display options
Share it on

Cartilage. 2014 Oct;5(4):221-30. doi: 10.1177/1947603514535245.

Multipotent Stromal Cells Outperform Chondrocytes on Cartilage-Derived Matrix Scaffolds.

Cartilage

K E M Benders, W Boot, S M Cokelaere, P R Van Weeren, D Gawlitta, H J Bergman, D B F Saris, W J A Dhert, J Malda

Affiliations

  1. Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands.
  2. Department of Equine Sciences, Utrecht University, Utrecht, the Netherlands.
  3. Lingehoeve, Veterinary Medicine, Lienden, the Netherlands.
  4. Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands ; MIRA Institute, Department of Tissue Regeneration, University of Twente, Enschede, the Netherlands.
  5. Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands ; Faculty of Veterinary Sciences, Utrecht University, Utrecht, the Netherlands.
  6. Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands ; Department of Equine Sciences, Utrecht University, Utrecht, the Netherlands.

PMID: 26069701 PMCID: PMC4335771 DOI: 10.1177/1947603514535245

Abstract

OBJECTIVE: Although extracellular matrix (ECM)-derived scaffolds have been extensively studied and applied in a number of clinical applications, the use of ECM as a biomaterial for (osteo)chondral regeneration is less extensively explored. This study aimed at evaluating the chondrogenic potential of cells seeded on cartilage-derived matrix (CDM) scaffolds in vitro.

DESIGN: Scaffolds were generated from decellularized equine articular cartilage and seeded with either chondrocytes or multipotent stromal cells (MSCs). After 2, 4, and 6 weeks of in vitro culture, CDM constructs were analyzed both histologically (hematoxylin and eosin, Safranin-O, collagen types I and II) and biochemically (glycosaminoglycan [GAG] and DNA content).

RESULTS: After 4 weeks, both cell types demonstrated chondrogenic differentiation; however, the MSCs significantly outperformed chondrocytes in producing new GAG-containing cartilaginous matrix.

CONCLUSION: These promising in vitro results underscore the potency of CDM scaffolds in (osteo)chondral defect repair.

Keywords: cartilage tissue engineering; chondrocyte; extracellular matrix (ECM); mesenchymal stromal cell; scaffold

References

  1. Matrix Biol. 2010 Oct;29(8):690-700 - PubMed
  2. Arthritis Rheum. 2006 Oct;54(10):3254-66 - PubMed
  3. Best Pract Res Clin Rheumatol. 2008 Apr;22(2):351-84 - PubMed
  4. Vet Comp Orthop Traumatol. 2006;19(3):142-6 - PubMed
  5. J Biomed Mater Res A. 2010 Mar 15;92(4):1567-77 - PubMed
  6. Pediatr Surg Int. 2006 Apr;22(4):369-74 - PubMed
  7. J Heart Valve Dis. 2011 May;20(3):319-25; discussion 326 - PubMed
  8. Biomaterials. 2011 Mar;32(9):2265-73 - PubMed
  9. J Mater Sci Mater Med. 2007 Apr;18(4):537-43 - PubMed
  10. Tissue Eng Part B Rev. 2010 Feb;16(1):105-15 - PubMed
  11. Endothelium. 2001;8(1):11-24 - PubMed
  12. Biomaterials. 2008 May;29(15):2378-87 - PubMed
  13. Biomaterials. 2009 Aug;30(22):3749-56 - PubMed
  14. J Orthop Res. 2009 Jan;27(1):65-70 - PubMed
  15. Osteoarthritis Cartilage. 2012 Oct;20(10):1147-51 - PubMed
  16. Biomaterials. 2011 Apr;32(12):3233-43 - PubMed
  17. Cell Transplant. 2011;20(9):1381-93 - PubMed
  18. Ann Rheum Dis. 1999 Jan;58(1):27-34 - PubMed
  19. N Engl J Med. 1994 Oct 6;331(14):889-95 - PubMed
  20. Injury. 2008 Apr;39 Suppl 1:S58-65 - PubMed
  21. Lancet. 2008 Dec 13;372(9655):2023-30 - PubMed
  22. J Knee Surg. 2011 Sep;24(3):159-66 - PubMed
  23. Cartilage. 2011 Oct;2(4):317-26 - PubMed
  24. BMC Musculoskelet Disord. 2013 Jan 07;14:12 - PubMed
  25. Biomaterials. 2002 Apr;23(8):1841-8 - PubMed
  26. Tissue Eng Part C Methods. 2010 Oct;16(5):865-76 - PubMed
  27. Biomaterials. 2013 Jul;34(23):5821-32 - PubMed
  28. Arthroscopy. 2002 Sep;18(7):730-4 - PubMed
  29. Cartilage. 2011 Apr;2(2):137-52 - PubMed
  30. J Biomed Mater Res A. 2003 Nov 1;67(2):637-40 - PubMed
  31. Vet Rec. 2011 Mar 12;168(10):265 - PubMed
  32. Biomaterials. 2006 Jul;27(19):3675-83 - PubMed
  33. J Cell Biochem. 2012 Jul;113(7):2217-22 - PubMed
  34. J Orthop Res. 2006 Jan;24(1):63-70 - PubMed
  35. Tissue Eng Part A. 2010 Nov;16(11):3309-17 - PubMed
  36. J Orthop Res. 2011 Jun;29(6):802-9 - PubMed
  37. J Cell Biochem. 1997 Dec 15;67(4):478-91 - PubMed
  38. Artif Organs. 2007 Mar;31(3):183-92 - PubMed
  39. Trends Biotechnol. 2013 Mar;31(3):169-76 - PubMed
  40. J Tissue Eng Regen Med. 2016 Apr;10 (4):315-24 - PubMed
  41. Obstet Gynecol Int. 2012;2012:376251 - PubMed
  42. Vet Pathol. 2007 Jul;44(4):429-48 - PubMed
  43. Tissue Eng. 1996 Fall;2(3):209-17 - PubMed
  44. Science. 1999 Apr 2;284(5411):143-7 - PubMed
  45. Plast Reconstr Surg. 2011 Nov;128(5):403e-410e - PubMed
  46. J Biomech. 2007;40(4):750-65 - PubMed
  47. Med Sci Sports Exerc. 2010 Oct;42(10):1795-801 - PubMed
  48. Tissue Eng Part A. 2012 Nov;18(21-22):2195-209 - PubMed
  49. J Biosci Bioeng. 2012 May;113(5):647-53 - PubMed
  50. J Mater Sci Mater Med. 2007 Apr;18(4):545-50 - PubMed
  51. Acta Biomater. 2009 Jan;5(1):1-13 - PubMed

Publication Types