Display options
Share it on

Cells. 2015 May 22;4(2):202-17. doi: 10.3390/cells4020202.

WIPI-Mediated Autophagy and Longevity.

Cells

Mona Grimmel, Charlotte Backhaus, Tassula Proikas-Cezanne

Affiliations

  1. Autophagy Laboratory, Department of Molecular Biology, Interfaculty Institute of Cell Biology, Faculty of Science, Eberhard Karls University Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany.
  2. Autophagy Laboratory, Department of Molecular Biology, Interfaculty Institute of Cell Biology, Faculty of Science, Eberhard Karls University Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany. [email protected].

PMID: 26010754 PMCID: PMC4493456 DOI: 10.3390/cells4020202

Abstract

Autophagy is a lysosomal degradation process for cytoplasmic components, including organelles, membranes, and proteins, and critically secures eukaryotic cellular homeostasis and survival. Moreover, autophagy-related (ATG) genes are considered essential for longevity control in model organisms. Central to the regulatory relationship between autophagy and longevity is the control of insulin/insulin-like growth factor receptor-driven activation of mTOR (mechanistic target of rapamycin), which inhibits WIPI (WD repeat protein interacting with phosphoinositides)-mediated autophagosome formation. Release of the inhibitory mTOR action on autophagy permits the production of PI3P (phosphatidylinositol-3 phosphate), predominantly at the endoplasmic reticulum, to function as an initiation signal for the formation of autophagosomes. WIPI proteins detect this pool of newly produced PI3P and function as essential PI3P effector proteins that recruit downstream autophagy-related (ATG) proteins. The important role of WIPI proteins in autophagy is highlighted by functional knockout of the WIPI homologues ATG-18 and EPG-6 in Caenorhabditis elegans (C. elegans). Adult lifespan is significantly reduced in ATG-18 mutant animals, demonstrating that longevity as such is crucially determined by essential autophagy factors. In this review we summarize the role of WIPI proteins and their C. elegans homologues with regard to the molecular basis of aging. As the development of strategies on how to increase health span in humans is increasingly appreciated, we speculate that targeting WIPI protein function might represent a therapeutic opportunity to fight and delay the onset of age-related human diseases.

Keywords: ATG-18; C. elegans; EPG-6; WIPI; WIPI-1; WIPI-2; autophagy; longevity

References

  1. Exp Gerontol. 2013 Oct;48(10):1014-7 - PubMed
  2. Autophagy. 2011 Apr;7(4):386-400 - PubMed
  3. J Cell Mol Med. 2011 Sep;15(9):2007-10 - PubMed
  4. Mol Cell. 2014 Jul 17;55(2):238-52 - PubMed
  5. Sci Signal. 2011 Aug 09;4(187):pe39 - PubMed
  6. J Mol Signal. 2012 Oct 22;7(1):16 - PubMed
  7. Nat Genet. 2013 Apr;45(4):445-9, 449e1 - PubMed
  8. Autophagy. 2012 Aug;8(8):1267-8 - PubMed
  9. Trends Endocrinol Metab. 2012 Dec;23(12):637-44 - PubMed
  10. FEBS Lett. 2006 Aug 21;580(19):4632-8 - PubMed
  11. BMC Cell Biol. 2012 Oct 31;13:28 - PubMed
  12. Nat Rev Mol Cell Biol. 2009 Jul;10 (7):458-67 - PubMed
  13. Mol Cell. 2008 Apr 25;30(2):214-26 - PubMed
  14. Autophagy. 2010 May;6(4):506-22 - PubMed
  15. Acta Pharmacol Sin. 2013 May;34(5):644-50 - PubMed
  16. PLoS Genet. 2008 Feb;4(2):e24 - PubMed
  17. Am J Hum Genet. 2012 Dec 7;91(6):1144-9 - PubMed
  18. Nature. 2015 Jan 15;517(7534):302-10 - PubMed
  19. Brain. 2013 Jun;136(Pt 6):1708-17 - PubMed
  20. Cell. 2013 Jun 6;153(6):1194-217 - PubMed
  21. Autophagy. 2013 Dec;9(12 ):1965-74 - PubMed
  22. Autophagy. 2012 Jan;8(1):144-6 - PubMed
  23. Nat Cell Biol. 2011 Feb;13(2):132-41 - PubMed
  24. Nat Rev Mol Cell Biol. 2011 Dec 14;13(1):7-12 - PubMed
  25. Science. 2003 Sep 5;301(5638):1387-91 - PubMed
  26. Trends Mol Med. 2009 May;15(5):217-24 - PubMed
  27. Autophagy. 2013 Jan;9(1):106-7 - PubMed
  28. Autophagy. 2011 Dec;7(12 ):1448-61 - PubMed
  29. Biochem Soc Trans. 2013 Aug;41(4):962-7 - PubMed
  30. J Cell Sci. 2015 Jan 15;128(2):207-17 - PubMed
  31. Exp Gerontol. 2013 Jul;48(7):596-602 - PubMed
  32. FEBS Lett. 2007 Jul 24;581(18):3396-404 - PubMed
  33. Science. 2001 Apr 6;292(5514):107-10 - PubMed
  34. Nat Rev Mol Cell Biol. 2012 Feb 23;13(3):195-203 - PubMed
  35. Nature. 2001 Nov 22;414(6862):412 - PubMed
  36. Nat Rev Cancer. 2012 Apr 26;12(6):401-10 - PubMed
  37. Genesis. 2013 Jan;51(1):1-15 - PubMed
  38. Nature. 2008 Feb 28;451(7182):1069-75 - PubMed
  39. Genes Cells. 2012 Sep;17(9):748-57 - PubMed
  40. Cell Metab. 2013 Jan 8;17(1):10-9 - PubMed
  41. Nature. 1993 Dec 2;366(6454):461-4 - PubMed
  42. Nature. 2004 Feb 12;427(6975):645-9 - PubMed
  43. EMBO Rep. 2014 Sep;15(9):973-81 - PubMed
  44. Genetics. 1988 Jan;118(1):75-86 - PubMed
  45. Genes Dev. 2007 Sep 1;21(17):2161-71 - PubMed
  46. Dev Cell. 2011 Aug 16;21(2):343-57 - PubMed
  47. Mech Ageing Dev. 1983 Jul-Aug;22(3-4):279-86 - PubMed
  48. Oncogene. 2004 Dec 16;23(58):9314-25 - PubMed
  49. Genes Cells. 2009 Jun;14(6):717-26 - PubMed
  50. J Cell Biol. 2012 Apr 2;197(1):27-35 - PubMed
  51. EMBO J. 2004 May 5;23 (9):1922-33 - PubMed
  52. Autophagy. 2008 Apr;4(3):330-8 - PubMed
  53. Am J Med Genet A. 2014 Sep;164A(9):2388-90 - PubMed

Publication Types