Display options
Share it on

Front Microbiol. 2015 May 20;6:466. doi: 10.3389/fmicb.2015.00466. eCollection 2015.

Soil microbial community structure is unaltered by plant invasion, vegetation clipping, and nitrogen fertilization in experimental semi-arid grasslands.

Frontiers in microbiology

Chelsea J Carey, J Michael Beman, Valerie T Eviner, Carolyn M Malmstrom, Stephen C Hart

Affiliations

  1. Department of Plant Pathology and Microbiology, University of California, Merced Merced, CA, USA.
  2. Life and Environmental Sciences, University of California, Merced Merced, CA, USA ; Sierra Nevada Research Institute, University of California, Merced Merced, CA, USA.
  3. Department of Plant Sciences, University of California, Davis Davis, CA, USA.
  4. Department of Plant Biology, Michigan State University East Lansing, MI, USA.

PMID: 26042104 PMCID: PMC4438599 DOI: 10.3389/fmicb.2015.00466

Abstract

Global and regional environmental changes often co-occur, creating complex gradients of disturbance on the landscape. Soil microbial communities are an important component of ecosystem response to environmental change, yet little is known about how microbial structure and function respond to multiple disturbances, or whether multiple environmental changes lead to unanticipated interactive effects. Our study used experimental semi-arid grassland plots in a Mediterranean-climate to determine how soil microbial communities in a seasonally variable ecosystem respond to one, two, or three simultaneous environmental changes: exotic plant invasion, plant invasion + vegetation clipping (to simulate common management practices like mowing or livestock grazing), plant invasion + nitrogen (N) fertilization, and plant invasion + clipping + N fertilization. We examined microbial community structure 5-6 years after plot establishment via sequencing of >1 million 16S rRNA genes. Abiotic soil properties (soil moisture, temperature, pH, and inorganic N) and microbial functioning (nitrification and denitrification potentials) were also measured and showed treatment-induced shifts, including altered NO(-) 3 availability, temperature, and nitrification potential. Despite these changes, bacterial and archaeal communities showed little variation in composition and diversity across treatments. Even communities in plots exposed to three interacting environmental changes were similar to those in restored native grassland plots. Historical exposure to large seasonal and inter-annual variations in key soil properties, in addition to prior site cultivation, may select for a functionally plastic or largely dormant microbial community, resulting in a microbial community that is structurally robust to single and multiple environmental changes.

Keywords: Mediterranean; clipping; environmental change; invasive species; microbial community structure; nitrogen fertilization; soil; stability

References

  1. Front Microbiol. 2013 Sep 05;4:265 - PubMed
  2. Nature. 2000 May 18;405(6784):299-304 - PubMed
  3. Environ Microbiol. 2008 Apr;10(4):926-41 - PubMed
  4. New Phytol. 2011 Jan;189(2):536-48 - PubMed
  5. FEMS Microbiol Ecol. 2010 Jun;72(3):386-94 - PubMed
  6. Stand Genomic Sci. 2010 Dec 25;3(3):249-53 - PubMed
  7. Ecol Lett. 2011 Jul;14(7):702-8 - PubMed
  8. PLoS One. 2013 Jun 28;8(6):e67884 - PubMed
  9. Microb Ecol. 2001 Jul;42(1):11-21 - PubMed
  10. Environ Microbiol. 2008 Nov;10(11):3093-105 - PubMed
  11. FEMS Microbiol Ecol. 2014 Jul;89(1):67-79 - PubMed
  12. Nat Rev Microbiol. 2011 Feb;9(2):119-30 - PubMed
  13. Front Microbiol. 2014 Oct 02;5:516 - PubMed
  14. Appl Environ Microbiol. 2012 Apr;78(7):2459-61 - PubMed
  15. ISME J. 2009 Apr;3(4):442-53 - PubMed
  16. ISME J. 2012 Aug;6(8):1621-4 - PubMed
  17. Science. 2000 Mar 10;287(5459):1770-4 - PubMed
  18. Microb Ecol. 2006 Nov;52(4):716-24 - PubMed
  19. J Environ Manage. 2010 Dec;91(12):2404-23 - PubMed
  20. Ecology. 2006 Apr;87(4):974-86 - PubMed
  21. Oecologia. 2007 Jan;150(4):590-601 - PubMed
  22. ISME J. 2013 Aug;7(8):1609-19 - PubMed
  23. Appl Environ Microbiol. 2009 Aug;75(15):5111-20 - PubMed
  24. Nat Methods. 2010 May;7(5):335-6 - PubMed
  25. PLoS One. 2013 Apr 22;8(4):e61217 - PubMed
  26. Front Microbiol. 2012 Dec 19;3:417 - PubMed
  27. Ecol Lett. 2008 Mar;11(3):296-310 - PubMed
  28. Ecol Lett. 2013 May;16 Suppl 1:128-39 - PubMed
  29. Environ Microbiol. 2009 Jul;11(7):1658-71 - PubMed
  30. Environ Res. 2011 Oct;111(7):899-908 - PubMed
  31. Appl Environ Microbiol. 2005 Dec;71(12):8228-35 - PubMed
  32. New Phytol. 2006;169(1):27-34 - PubMed
  33. FEMS Microbiol Rev. 2013 Mar;37(2):112-29 - PubMed
  34. Environ Microbiol. 2014 Feb;16(2):559-69 - PubMed
  35. Appl Environ Microbiol. 1999 Sep;65(9):4155-62 - PubMed
  36. Environ Microbiol. 2010 Jul;12(7):1842-54 - PubMed
  37. ISME J. 2009 Jun;3(6):738-44 - PubMed
  38. Ecology. 2010 Dec;91(12):3463-70; discussion 3503-14 - PubMed
  39. Ecology. 2007 Jun;88(6):1354-64 - PubMed
  40. Front Microbiol. 2012 Sep 26;3:348 - PubMed
  41. Science. 2007 Jan 26;315(5811):476-80 - PubMed
  42. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4516-22 - PubMed
  43. Microbiol Rev. 1996 Dec;60(4):609-40 - PubMed
  44. ISME J. 2012 May;6(5):1007-17 - PubMed
  45. New Phytol. 2008;177(3):706-14 - PubMed
  46. Nat Methods. 2013 Jan;10(1):57-9 - PubMed

Publication Types