Display options
Share it on

Mol Ther Methods Clin Dev. 2014 Oct 01;1:14039. doi: 10.1038/mtm.2014.39. eCollection 2014.

AAV8-mediated Sirt1 gene transfer to the liver prevents high carbohydrate diet-induced nonalcoholic fatty liver disease.

Molecular therapy. Methods & clinical development

Laia Vilà, Ivet Elias, Carles Roca, Albert Ribera, Tura Ferré, Alba Casellas, Ricardo Lage, Sylvie Franckhauser, Fatima Bosch

Affiliations

  1. Center of Animal Biotechnology and Gene Therapy, School of Veterinary Medicine, Universitat Autònoma de Barcelona , Bellaterra, Spain ; Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona , Bellaterra, Spain ; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) , Barcelona, Spain.
  2. Center of Animal Biotechnology and Gene Therapy, School of Veterinary Medicine, Universitat Autònoma de Barcelona , Bellaterra, Spain ; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) , Barcelona, Spain.
  3. Center of Animal Biotechnology and Gene Therapy, School of Veterinary Medicine, Universitat Autònoma de Barcelona , Bellaterra, Spain ; Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona , Bellaterra, Spain.

PMID: 26015978 PMCID: PMC4362360 DOI: 10.1038/mtm.2014.39

Abstract

Nonalcoholic fatty liver disease (NAFLD) is the most common hepatic disease worldwide, and evidence suggests that it promotes insulin resistance and type 2 diabetes. Caloric restriction (CR) is the only available strategy for NAFLD treatment. The protein deacetylase Sirtuin1 (SIRT1), which is activated by CR, increases catabolic metabolism and decreases lipogenesis and inflammation, both involved in the development of NAFLD. Here we show that adeno-associated viral vectors of serotype 8 (AAV8)-mediated liver-specific Sirt1 gene transfer prevents the development of NAFLD induced by a high carbohydrate (HC) diet. Long-term hepatic SIRT1 overexpression led to upregulation of key hepatic genes involved in β-oxidation, prevented HC diet-induced lipid accumulation and reduced liver inflammation. AAV8-Sirt1-treated mice showed improved insulin sensitivity, increased oxidative capacity in skeletal muscle and reduced white adipose tissue inflammation. Moreover, HC feeding induced leptin resistance, which was also attenuated in AAV8-Sirt1-treated mice. Therefore, AAV-mediated gene transfer to overexpress SIRT1 specifically in the liver may represent a new gene therapy strategy to counteract NAFLD and related diseases such as type 2 diabetes.

References

  1. Nat Rev Gastroenterol Hepatol. 2010 May;7(5):251-64 - PubMed
  2. Curr Opin Lipidol. 2009 Apr;20(2):98-105 - PubMed
  3. Am J Physiol Gastrointest Liver Physiol. 2008 Oct;295(4):G833-42 - PubMed
  4. Endocrinology. 2010 Jun;151(6):2504-14 - PubMed
  5. J Hepatol. 2009 Jul;51(1):212-23 - PubMed
  6. Int J Biol Sci. 2009;5(2):147-52 - PubMed
  7. Blood. 2006 Jul 1;108(1):107-15 - PubMed
  8. Nutr J. 2013 Aug 08;12:114 - PubMed
  9. Hepatology. 2013 Jun;57(6):2525-31 - PubMed
  10. Diabetes. 2012 Jul;61(7):1801-13 - PubMed
  11. FASEB J. 2011 May;25(5):1664-79 - PubMed
  12. Am J Physiol Endocrinol Metab. 2009 Nov;297(5):E1179-86 - PubMed
  13. Lipids Health Dis. 2012 Jan 05;11:2 - PubMed
  14. Mol Ther. 2008 Jun;16(6):1073-80 - PubMed
  15. Nature. 2010 Mar 4;464(7285):121-5 - PubMed
  16. Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5748-52 - PubMed
  17. Hepatology. 2007 Mar;45(3):778-88 - PubMed
  18. Cell Metab. 2009 Apr;9(4):327-38 - PubMed
  19. World J Gastroenterol. 2012 Dec 7;18(45):6552-9 - PubMed
  20. Int J Clin Exp Pathol. 2010 Aug 02;3(7):675-80 - PubMed
  21. Mol Endocrinol. 2007 Aug;21(8):1745-55 - PubMed
  22. PLoS One. 2010 Jul 22;5(7):e11707 - PubMed
  23. Aging Cell. 2007 Dec;6(6):759-67 - PubMed
  24. Int J Mol Sci. 2013 Nov 20;14(11):22933-66 - PubMed
  25. Physiol Rev. 2012 Jul;92(3):1479-514 - PubMed
  26. Diabetes. 2011 Aug;60(8):2011-7 - PubMed
  27. Clin Microbiol Rev. 2008 Oct;21(4):583-93 - PubMed
  28. World J Gastroenterol. 2011 Aug 7;17(29):3377-89 - PubMed
  29. J Clin Invest. 2006 Jul;116(7):1793-801 - PubMed
  30. Nat Rev Endocrinol. 2011 Nov 08;8(4):228-36 - PubMed
  31. Nat Commun. 2010 Apr 12;1:3 - PubMed
  32. Hepatology. 2006 Feb;43(2 Suppl 1):S99-S112 - PubMed
  33. Mech Ageing Dev. 2006 Jan;127(1):1-7 - PubMed
  34. Nat Rev Mol Cell Biol. 2005 Apr;6(4):298-305 - PubMed
  35. Cell Metab. 2008 Oct;8(4):333-41 - PubMed
  36. Int J Obes (Lond). 2005 Oct;29(10):1175-83 - PubMed
  37. World J Gastroenterol. 2013 Feb 28;19(8):1166-72 - PubMed
  38. Pharmacol Res. 2010 Jul;62(1):35-41 - PubMed
  39. Nat Rev Genet. 2011 May;12(5):341-55 - PubMed
  40. Mol Ther. 2005 Jun;11(6):875-88 - PubMed
  41. Physiol Behav. 2008 May 23;94(2):242-51 - PubMed
  42. Science. 2009 Jul 10;325(5937):201-4 - PubMed
  43. Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9793-8 - PubMed
  44. Cell Metab. 2008 Nov;8(5):347-58 - PubMed
  45. Science. 2004 Jul 16;305(5682):390-2 - PubMed
  46. Diabetologia. 2013 Jul;56(7):1629-37 - PubMed
  47. Biochim Biophys Acta. 2010 Aug;1804(8):1652-7 - PubMed
  48. Gene Ther. 2010 Apr;17(4):503-10 - PubMed
  49. Hepatology. 2008 Nov;48(5):1506-16 - PubMed
  50. Diabetes. 2013 Feb;62(2):551-60 - PubMed

Publication Types