Display options
Share it on

Front Cell Neurosci. 2015 May 28;9:200. doi: 10.3389/fncel.2015.00200. eCollection 2015.

Suppression of piriform cortex activity in rat by corticotropin-releasing factor 1 and serotonin 2A/C receptors.

Frontiers in cellular neuroscience

Chakravarthi Narla, Henry A Dunn, Stephen S G Ferguson, Michael O Poulter

Affiliations

  1. Molecular Medicine Research Group, Department of Physiology and Pharmacology, Robarts Research Institute, Faculty of Medicine, Schulich School of Medicine, University of Western Ontario London, ON, Canada.

PMID: 26074770 PMCID: PMC4446537 DOI: 10.3389/fncel.2015.00200

Abstract

The piriform cortex (PC) is richly innervated by corticotropin-releasing factor (CRF) and serotonin (5-HT) containing axons arising from central amygdala and Raphe nucleus. CRFR1 and 5-HT2A/2CRs have been shown to interact in manner where CRFR activation subsequently potentiates the activity of 5-HT2A/2CRs. The purpose of this study was to determine how the activation of CRFR1 and/or 5-HT2Rs modulates PC activity at both the circuit and cellular level. Voltage sensitive dye imaging showed that CRF acting through CRFR1 dampened activation of the Layer II of PC and interneurons of endopiriform nucleus. Application of the selective 5-HT2A/CR agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) following CRFR1 activation potentiated this effect. Blocking the interaction between CRFR1 and 5-HT2R with a Tat-CRFR1-CT peptide abolished this potentiation. Application of forskolin did not mimic CRFR1 activity but instead blocked it, while a protein kinase A antagonist had no effect. However, activation and antagonism of protein kinase C (PKC) either mimicked or blocked CRF modulation, respectively. DOI had no effect when applied alone indicating that the prior activation of CRFR1 receptors was critical for DOI to show significant effects similar to CRF. Patch clamp recordings showed that both CRF and DOI reduced the synaptic responsiveness of Layer II pyramidal neurons. CRF had highly variable effects on interneurons within Layer III, both increasing and decreasing their excitability, but DOI had no effect on the excitability of this group of neurons. These data show that CRF and 5-HT, acting through both CRFR1 and 5-HT2A/CRs, reduce the activation of the PC. This modulation may be an important blunting mechanism of stressor behaviors mediated through the olfactory cortex.

Keywords: 5-hydroxytryptamine receptors; adapting high frequency; adapting low frequency; corticotropin releasing factor 1 receptor; corticotropin-releasing factor; dimethoxy-4-iodoamphetamine; non-adapting very high frequency; piriform cortex

References

  1. Pharmacol Biochem Behav. 1975 Jan-Feb;3(1):127-31 - PubMed
  2. Prog Neurobiol. 2008 May;85(1):1-74 - PubMed
  3. J Psychiatr Res. 2011 Feb;45(2):256-61 - PubMed
  4. Neurobiol Dis. 2012 Dec;48(3):317-28 - PubMed
  5. Physiol Rev. 2007 Jul;87(3):873-904 - PubMed
  6. Cereb Cortex. 2007 May;17(5):1020-32 - PubMed
  7. J Neurosci. 2003 Jan 15;23(2):700-7 - PubMed
  8. J Biol Chem. 2004 Sep 10;279(37):38386-94 - PubMed
  9. Biol Psychiatry. 1988 Jan 15;23(2):189-208 - PubMed
  10. J Neurosci. 2008 Apr 9;28(15):3861-76 - PubMed
  11. J Neurosci. 1985 Dec;5(12):3189-203 - PubMed
  12. J Neurosci. 2002 Nov 15;22(22):9922-31 - PubMed
  13. J Neurochem. 2002 Feb;80(3):416-25 - PubMed
  14. Eur J Neurosci. 2004 Jul;20(1):229-39 - PubMed
  15. J Comp Neurol. 2000 Dec 11;428(2):191-212 - PubMed
  16. Neuropsychopharmacology. 1997 Nov;17(5):308-16 - PubMed
  17. Mol Ther. 2008 Nov;16(11):1776-82 - PubMed
  18. Neuroscience. 2005;135(3):659-78 - PubMed
  19. Nat Rev Neurosci. 2008 Jul;9(7):557-68 - PubMed
  20. Annu Rev Neurosci. 1992;15:353-75 - PubMed
  21. J Comp Neurol. 2001 Jun 4;434(3):289-307 - PubMed
  22. J Pharmacol Exp Ther. 1996 Sep;278(3):1373-82 - PubMed
  23. Prog Neurobiol. 1996 Dec;50(5-6):427-81 - PubMed
  24. Brain Res. 1990 Jan 1;506(1):62-9 - PubMed
  25. Eur J Pharmacol. 1994 Jul 1;259(2):137-41 - PubMed
  26. Hum Psychopharmacol. 2000 Aug;15(6):397-415 - PubMed
  27. Front Neuroendocrinol. 2014 Apr;35(2):234-44 - PubMed
  28. Front Cell Neurosci. 2013 Jul 19;7:91 - PubMed
  29. Brain Res. 2012 Oct 2;1476:71-85 - PubMed
  30. Brain Res. 1985 Nov 4;346(2):231-49 - PubMed
  31. Horm Behav. 2006 Nov;50(4):550-61 - PubMed
  32. J Endocrinol. 1999 Jan;160(1):1-12 - PubMed
  33. Neuropsychopharmacology. 2000 Feb;22(2):148-62 - PubMed
  34. Neuroscience. 1998 May;84(1):71-9 - PubMed
  35. J Clin Psychopharmacol. 1990 Jun;10(3 Suppl):26S-30S - PubMed
  36. Nat Neurosci. 2003 Oct;6(10):1100-7 - PubMed
  37. Science. 1983 Aug 26;221(4613):875-7 - PubMed
  38. J Biol Chem. 2013 May 24;288(21):15023-34 - PubMed
  39. Front Syst Neurosci. 2013 Oct 10;7:66 - PubMed
  40. Behav Brain Res. 2007 Aug 6;181(2):180-90 - PubMed
  41. Nat Rev Neurosci. 2005 Jun;6(6):463-75 - PubMed
  42. Endocrinology. 2008 Mar;149(3):1389-98 - PubMed
  43. Methods Mol Biol. 2004;237:121-6 - PubMed
  44. J Neurosci. 2013 Sep 25;33(39):15324-32 - PubMed
  45. Front Neural Circuits. 2013 Nov 19;7:183 - PubMed
  46. Nat Neurosci. 2010 May;13(5):622-9 - PubMed
  47. Mol Pharmacol. 2014 Sep;86(3):275-83 - PubMed
  48. Synapse. 1991 Nov;9(3):208-18 - PubMed
  49. J Neurosci. 2004 May 26;24(21):5000-8 - PubMed

Publication Types