Display options
Share it on

Front Neuroanat. 2015 May 27;9:68. doi: 10.3389/fnana.2015.00068. eCollection 2015.

Quantitative neuroanatomy of all Purkinje cells with light sheet microscopy and high-throughput image analysis.

Frontiers in neuroanatomy

Ludovico Silvestri, Marco Paciscopi, Paolo Soda, Filippo Biamonte, Giulio Iannello, Paolo Frasconi, Francesco S Pavone

Affiliations

  1. National Institute of Optics, National Research Council Sesto Fiorentino, Italy ; European Laboratory for Non-Linear Spectroscopy Sesto Fiorentino, Italy.
  2. Department of Information Engineering, University of Florence Florence, Italy.
  3. Department of Engineering, University Campus Bio-Medico of Rome Rome, Italy.
  4. Institute of Histology and Embryology, Catholic University of the Sacred Heart "A. Gemelli", Rome Italy.
  5. European Laboratory for Non-Linear Spectroscopy Sesto Fiorentino, Italy.
  6. National Institute of Optics, National Research Council Sesto Fiorentino, Italy ; European Laboratory for Non-Linear Spectroscopy Sesto Fiorentino, Italy ; Department of Physics and Astronomy, University of Florence Sesto Fiorentino, Italy ; International Center for Computational Neurophotonics Sesto Fiorentino, Italy.

PMID: 26074783 PMCID: PMC4445386 DOI: 10.3389/fnana.2015.00068

Abstract

Characterizing the cytoarchitecture of mammalian central nervous system on a brain-wide scale is becoming a compelling need in neuroscience. For example, realistic modeling of brain activity requires the definition of quantitative features of large neuronal populations in the whole brain. Quantitative anatomical maps will also be crucial to classify the cytoarchtitectonic abnormalities associated with neuronal pathologies in a high reproducible and reliable manner. In this paper, we apply recent advances in optical microscopy and image analysis to characterize the spatial distribution of Purkinje cells (PCs) across the whole cerebellum. Light sheet microscopy was used to image with micron-scale resolution a fixed and cleared cerebellum of an L7-GFP transgenic mouse, in which all PCs are fluorescently labeled. A fast and scalable algorithm for fully automated cell identification was applied on the image to extract the position of all the fluorescent PCs. This vectorized representation of the cell population allows a thorough characterization of the complex three-dimensional distribution of the neurons, highlighting the presence of gaps inside the lamellar organization of PCs, whose density is believed to play a significant role in autism spectrum disorders. Furthermore, clustering analysis of the localized somata permits dividing the whole cerebellum in groups of PCs with high spatial correlation, suggesting new possibilities of anatomical partition. The quantitative approach presented here can be extended to study the distribution of different types of cell in many brain regions and across the whole encephalon, providing a robust base for building realistic computational models of the brain, and for unbiased morphological tissue screening in presence of pathologies and/or drug treatments.

Keywords: Purkinje cells; brain imaging; cerebellum; image analysis; light sheet microscopy; quantitative neuroanatomy

References

  1. Methods. 2014 Mar 15;66(2):268-72 - PubMed
  2. Nat Methods. 2007 Apr;4(4):331-6 - PubMed
  3. Neural Dev. 2010 Sep 01;5:23 - PubMed
  4. J Neurosci. 2008 Mar 19;28(12):2959-64 - PubMed
  5. J Neurogenet. 2009;23(1-2):68-77 - PubMed
  6. PLoS One. 2012;7(3):e33916 - PubMed
  7. Nature. 2014 May 15;509(7500):331-6 - PubMed
  8. Ann Anat. 2014 Jul;196(4):224-35 - PubMed
  9. Cell. 2014 Apr 24;157(3):726-39 - PubMed
  10. Nat Commun. 2014 Jul 11;5:4342 - PubMed
  11. Science. 2008 Nov 14;322(5904):1065-9 - PubMed
  12. Nat Methods. 2005 Dec;2(12):910-9 - PubMed
  13. Cerebellum. 2014 Jun;13(3):346-53 - PubMed
  14. Science. 2000 Dec 22;290(5500):2319-23 - PubMed
  15. Prog Brain Res. 1969;31:141-55 - PubMed
  16. Nat Rev Neurosci. 2014 Apr;15(4):264-78 - PubMed
  17. Front Neuroanat. 2010 Jun 09;4:22 - PubMed
  18. Nature. 2011 Mar 10;471(7337):183-8 - PubMed
  19. Science. 2010 Dec 3;330(6009):1404-8 - PubMed
  20. Nat Biotechnol. 2010 Apr;28(4):348-53 - PubMed
  21. Nat Med. 2011 Dec 25;18(1):166-71 - PubMed
  22. Neurobiol Dis. 2009 Oct;36(1):103-15 - PubMed
  23. Opt Express. 2012 Aug 27;20(18):20582-98 - PubMed
  24. Magn Reson Med. 2002 May;47(5):967-72 - PubMed
  25. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):193-202 - PubMed
  26. Neurotoxicology. 2014 Dec;45:67-80 - PubMed
  27. Bioinformatics. 2014 Sep 1;30(17):i587-93 - PubMed
  28. Nat Methods. 2013 Jun;10(6):515-23 - PubMed
  29. BMC Bioinformatics. 2012 Nov 27;13:316 - PubMed
  30. Neuroimage. 2013 Jul 1;74:87-98 - PubMed
  31. Science. 1990 Apr 13;248(4952):223-6 - PubMed
  32. Cerebellum. 2006;5(2):163-73 - PubMed
  33. PLoS One. 2008 Feb 27;3(2):e1653 - PubMed
  34. Nature. 2013 May 16;497(7449):332-7 - PubMed
  35. J Biomed Opt. 2010 Jan-Feb;15(1):016027 - PubMed
  36. Nat Clin Pract Cardiovasc Med. 2008 Aug;5 Suppl 2:S71-8 - PubMed
  37. Nat Protoc. 2014 Jul;9(7):1682-97 - PubMed
  38. Nat Methods. 2012 Jan 15;9(3):255-8 - PubMed
  39. Curr Opin Neurobiol. 2012 Feb;22(1):138-43 - PubMed
  40. Curr Opin Neurobiol. 2006 Oct;16(5):562-70 - PubMed
  41. Front Syst Neurosci. 2010 Feb 08;4:1 - PubMed

Publication Types