Display options
Share it on

Front Neuroanat. 2015 May 28;9:72. doi: 10.3389/fnana.2015.00072. eCollection 2015.

Interaction between SCO-spondin and low density lipoproteins from embryonic cerebrospinal fluid modulates their roles in early neurogenesis.

Frontiers in neuroanatomy

América Vera, Antonia Recabal, Natalia Saldivia, Karen Stanic, Marcela Torrejón, Hernán Montecinos, Teresa Caprile

Affiliations

  1. Department of Cell Biology, Faculty of Biological Sciences, University of Concepción Concepción, Chile.
  2. Faculty of Biological Sciences, Department of Biochemistry and Molecular Biology, University of Concepción Concepción, Chile.

PMID: 26074785 PMCID: PMC4446542 DOI: 10.3389/fnana.2015.00072

Abstract

During early stages of development, encephalic vesicles are composed by a layer of neuroepithelial cells surrounding a central cavity filled with embryonic cerebrospinal fluid (eCSF). This fluid contains several morphogens that regulate proliferation and differentiation of neuroepithelial cells. One of these neurogenic factors is SCO-spondin, a giant protein secreted to the eCSF from early stages of development. Inhibition of this protein in vivo or in vitro drastically decreases the neurodifferentiation process. Other important neurogenic factors of the eCSF are low density lipoproteins (LDL), the depletion of which generates a 60% decrease in mesencephalic explant neurodifferentiation. The presence of several LDL receptor class A (LDLrA) domains (responsible for LDL binding in other proteins) in the SCO-spondin sequence suggests a possible interaction between both molecules. This possibility was analyzed using three different experimental approaches: (1) Bioinformatics analyses of the SCO-spondin region, that contains eight LDLrA domains in tandem, and of comparisons with the LDL receptor consensus sequence; (2) Analysis of the physical interactions of both molecules through immunohistochemical colocalization in embryonic chick brains and through the immunoprecipitation of LDL with anti-SCO-spondin antibodies; and (3) Analysis of functional interactions during the neurodifferentiation process when these molecules were added to a culture medium of mesencephalic explants. The results revealed that LDL and SCO-spondin interact to form a complex that diminishes the neurogenic capacities that both molecules have separately. Our work suggests that the eCSF is an active signaling center with a complex regulation system that allows for correct brain development.

Keywords: SCO-spondin; brain development; chick embryo; embryonic cerebrospinal fluid; low density lipoproteins; neurogenesis

References

  1. Microvasc Res. 2015 Mar;98:9-15 - PubMed
  2. Histochemistry. 1986;84(1):31-40 - PubMed
  3. J Exp Zool A Comp Exp Biol. 2004 Apr 1;301(4):280-9 - PubMed
  4. Annu Rev Nutr. 1999;19:141-72 - PubMed
  5. J Clin Neurosci. 2009 Oct;16(10):1334-7 - PubMed
  6. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1774-8 - PubMed
  7. Anat Rec A Discov Mol Cell Evol Biol. 2005 Aug;285(2):737-47 - PubMed
  8. J Lipid Res. 2010 Feb;51(2):297-308 - PubMed
  9. Int J Dev Neurosci. 2009 Nov;27(7):733-40 - PubMed
  10. Brain Res Mol Brain Res. 2003 Feb 20;110(2):177-92 - PubMed
  11. Dev Biol. 2009 Mar 15;327(2):263-72 - PubMed
  12. Neuron. 2011 Mar 10;69(5):893-905 - PubMed
  13. Int J Dev Biol. 2014;58(1):35-43 - PubMed
  14. J Biol Chem. 1989 Dec 25;264(36):21682-8 - PubMed
  15. Trends Endocrinol Metab. 2002 Mar;13(2):66-74 - PubMed
  16. Proc Natl Acad Sci U S A. 2010 May 4;107(18):8422-7 - PubMed
  17. J Biol Chem. 2014 Jun 6;289(23):15894-903 - PubMed
  18. J Physiol. 1980 Mar;300:441-55 - PubMed
  19. Cell Mol Life Sci. 2012 Sep;69(17):2863-78 - PubMed
  20. J Biol Chem. 2009 May 15;284(20):13396-400 - PubMed
  21. Curr Opin Struct Biol. 2003 Dec;13(6):683-9 - PubMed
  22. Dev Biol. 1977 May;57(1):188-98 - PubMed
  23. Dev Dyn. 2010 Oct;239(10):2584-93 - PubMed
  24. Front Cell Neurosci. 2013 Jun 03;7:80 - PubMed
  25. Development. 2007 Sep;134(18):3239-49 - PubMed
  26. Hybridoma. 1998 Aug;17(4):395-401 - PubMed
  27. Dev Biol. 1974 Dec;41(2):245-54 - PubMed
  28. Biochemistry. 2004 Feb 3;43(4):1037-44 - PubMed
  29. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6334-8 - PubMed
  30. Dev Biol. 2006 Sep 15;297(2):402-16 - PubMed
  31. Microsc Res Tech. 2001 Mar 1;52(5):564-72 - PubMed
  32. Brain Res Bull. 2008 Mar 18;75(2-4):289-94 - PubMed
  33. J Neurosci Res. 2008 Sep;86(12):2674-84 - PubMed
  34. Genetics. 2000 Jan;154(1):247-57 - PubMed
  35. Annu Rev Biochem. 2005;74:535-62 - PubMed
  36. Dev Dyn. 2009 Oct;238(10):2494-504 - PubMed
  37. Biochemistry. 2010 Feb 16;49(6):1207-16 - PubMed
  38. PLoS One. 2012;7(3):e34088 - PubMed
  39. Dev Dyn. 2011 Jul;240(7):1650-9 - PubMed
  40. Anat Rec A Discov Mol Cell Evol Biol. 2005 May;284(1):475-84 - PubMed
  41. Cell Tissue Res. 2007 Jan;327(1):111-9 - PubMed
  42. Nature. 2005 May 5;435(7038):58-65 - PubMed
  43. Cerebrospinal Fluid Res. 2008 Jan 24;5:3 - PubMed
  44. Cell. 1995 Sep 8;82(5):785-94 - PubMed
  45. Am J Pathol. 2004 Aug;165(2):541-52 - PubMed
  46. Development. 2013 Mar;140(5):1055-66 - PubMed
  47. J Cell Sci. 1996 May;109 ( Pt 5):1053-61 - PubMed
  48. Dev Dyn. 1992 Dec;195(4):231-72 - PubMed
  49. Neuroreport. 2008 Jun 11;19(9):945-50 - PubMed
  50. J Clin Neurosci. 2009 Jul;16(7):950-3 - PubMed
  51. Arteriosclerosis. 1987 Sep-Oct;7(5):483-90 - PubMed
  52. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2389-93 - PubMed
  53. Cell J. 2013 Spring;15(1):29-36 - PubMed
  54. Microsc Res Tech. 1998 Apr 15;41(2):98-123 - PubMed
  55. Croat Med J. 2014 Aug 28;55(4):299-305 - PubMed
  56. Dev Biol. 2008 Sep 1;321(1):51-63 - PubMed
  57. Eur J Neurol. 2006 Jul;13(7):760-4 - PubMed
  58. J Biol Chem. 2004 Nov 12;279(46):47633-42 - PubMed

Publication Types