Display options
Share it on

Front Neurol. 2015 May 27;6:119. doi: 10.3389/fneur.2015.00119. eCollection 2015.

High-Intensity, Unilateral Resistance Training of a Non-Paretic Muscle Group Increases Active Range of Motion in a Severely Paretic Upper Extremity Muscle Group after Stroke.

Frontiers in neurology

M A Urbin, Michelle L Harris-Love, Alex R Carter, Catherine E Lang

Affiliations

  1. Program in Physical Therapy, Washington University School of Medicine , St. Louis, MO , USA.
  2. Georgetown University Medical Center, MedStar National Rehabilitation Hospital , Washington, DC , USA.
  3. Department of Neurology, Washington University School of Medicine , St. Louis, MO , USA.
  4. Program in Physical Therapy, Washington University School of Medicine , St. Louis, MO , USA ; Department of Neurology, Washington University School of Medicine , St. Louis, MO , USA ; Program in Occupational Therapy, Washington University School of Medicine , St. Louis, MO , USA.

PMID: 26074871 PMCID: PMC4445317 DOI: 10.3389/fneur.2015.00119

Abstract

Limited rehabilitation strategies are available for movement restoration when paresis is too severe following stroke. Previous research has shown that high-intensity resistance training of one muscle group enhances strength of the homologous, contralateral muscle group in neurologically intact adults. How this "cross education" phenomenon might be exploited to moderate severe weakness in an upper extremity muscle group after stroke is not well understood. The primary aim of this study was to examine adaptations in force-generating capacity of severely paretic wrist extensors resulting from high intensity, dynamic contractions of the non-paretic wrist extensors. A secondary, exploratory aim was to probe neural adaptations in a subset of participants from each sample using a single-pulse, transcranial magnetic stimulation (TMS) protocol. Separate samples of neurologically intact controls (n = 7) and individuals ≥4 months post stroke (n = 6) underwent 16 sessions of training. Following training, one-repetition maximum of the untrained wrist extensors in the control group and active range of motion of the untrained, paretic wrist extensors in the stroke group were significantly increased. No changes in corticospinal excitability, intracortical inhibition, or interhemispheric inhibition were observed in control participants. Both stroke participants who underwent TMS testing, however, exhibited increased voluntary muscle activation following the intervention. In addition, motor-evoked potentials that were unobtainable prior to the intervention were readily elicited afterwards in a stroke participant. Results of this study demonstrate that high-intensity resistance training of a non-paretic upper extremity muscle group can enhance voluntary muscle activation and force-generating capacity of a severely paretic muscle group after stroke. There is also preliminary evidence that corticospinal adaptations may accompany these gains.

Keywords: cross education; electrophysiology; rehabilitation; resistance training; stroke; upper extremity

References

  1. J Neurol. 2012 Jul;259(7):1399-405 - PubMed
  2. Med Sci Sports Exerc. 2011 Jul;43(7):1188-99 - PubMed
  3. Front Hum Neurosci. 2013 Jul 24;7:396 - PubMed
  4. J Strength Cond Res. 2005 Nov;19(4):950-8 - PubMed
  5. Neuroimage. 2005 Dec;28(4):940-6 - PubMed
  6. Med Sci Sports Exerc. 2005 Sep;37(9):1622-6 - PubMed
  7. Eur Neurol. 1974;12(3):142-7 - PubMed
  8. Med Sci Sports Exerc. 1997 Jan;29(1):107-12 - PubMed
  9. J Neurophysiol. 2003 Oct;90(4):2451-9 - PubMed
  10. Eur J Appl Physiol Occup Physiol. 1983;51(3):321-9 - PubMed
  11. Exp Brain Res. 1994;100(1):121-32 - PubMed
  12. Physiol Rev. 2001 Oct;81(4):1725-89 - PubMed
  13. Electroencephalogr Clin Neurophysiol. 1997 Dec;105(6):438-50 - PubMed
  14. Stroke. 2001 Dec 1;32(12):2735-40 - PubMed
  15. Exp Brain Res. 2011 Jan;208(2):217-27 - PubMed
  16. Clin Neurophysiol. 2002 Oct;113(10):1536-43 - PubMed
  17. Stroke. 2002 Jul;33(7):1840-4 - PubMed
  18. J Appl Physiol (1985). 2005 Nov;99(5):1880-4 - PubMed
  19. Stroke. 1997 Feb;28(2):284-90 - PubMed
  20. Exp Brain Res. 2013 Mar;225(1):93-104 - PubMed
  21. J Neurophysiol. 1989 Nov;62(5):1018-27 - PubMed
  22. Lancet. 1997 May 3;349(9061):1269-76 - PubMed
  23. Exerc Sport Sci Rev. 2000 Oct;28(4):177-84 - PubMed
  24. Acta Physiol (Oxf). 2011 Jun;202(2):119-40 - PubMed
  25. J Appl Physiol (1985). 2006 Jan;100(1):83-90 - PubMed
  26. J Hand Ther. 2013 Apr-Jun;26(2):104-14;quiz 115 - PubMed
  27. J Neurol Sci. 1996 Dec;144(1-2):160-70 - PubMed
  28. J Neurophysiol. 2003 Mar;89(3):1256-64 - PubMed
  29. Aust J Physiother. 2005;51(4):221-31 - PubMed
  30. Clin Neurophysiol. 2009 Apr;120(4):802-8 - PubMed
  31. Neuropsychologia. 1971 Mar;9(1):97-113 - PubMed
  32. Clin Neurophysiol. 2000 Sep;111(9):1695-703 - PubMed
  33. J Neurosci Res. 2002 May 15;68(4):489-95 - PubMed
  34. Neurorehabil Neural Repair. 2011 Jun;25(5):398-411 - PubMed
  35. Eur J Appl Physiol. 2012 Aug;112(8):3097-107 - PubMed
  36. Muscle Nerve. 2012 Sep;46(3):384-93 - PubMed
  37. J Neurosci Methods. 2001 Dec 15;112(2):193-202 - PubMed
  38. Clin Neurophysiol. 2006 May;117(5):1037-46 - PubMed
  39. Acta Physiol Scand. 1998 Mar;162(3):275-83 - PubMed
  40. Motor Control. 2011 Apr;15(2):247-66 - PubMed
  41. Ann Neurol. 2004 Mar;55(3):400-9 - PubMed
  42. Ann Neurol. 1998 May;43(5):608-12 - PubMed
  43. Lancet Neurol. 2003 Aug;2(8):493-502 - PubMed
  44. J Rehabil Med. 2014 Oct;46(9):833-42 - PubMed
  45. Neuromodulation. 2012 Jul;15(4):316-25 - PubMed
  46. Electroencephalogr Clin Neurophysiol. 1991 Aug;81(4):257-62 - PubMed
  47. Neurorehabil Neural Repair. 2011 Jun;25(5 Suppl):21S-32S - PubMed
  48. Stroke. 2009 May;40(5):1772-9 - PubMed
  49. Eur J Appl Physiol. 2002 Feb;86(4):287-94 - PubMed
  50. Clin Neurophysiol. 2014 Oct;125(10):2055-69 - PubMed
  51. Brain. 1995 Apr;118 ( Pt 2):429-40 - PubMed
  52. Exp Brain Res. 1993;94(3):489-98 - PubMed
  53. J Appl Physiol (1985). 2006 Nov;101(5):1514-22 - PubMed
  54. Neurology. 1991 Nov;41(11):1795-9 - PubMed
  55. Arch Neurol. 1961 Feb;4:165-72 - PubMed
  56. Confin Neurol. 1974;36(1):1-4 - PubMed
  57. PLoS One. 2014 Feb 04;9(2):e87987 - PubMed
  58. Med Sci Sports Exerc. 1995 May;27(5):648-60 - PubMed
  59. Exerc Sport Sci Rev. 2014 Apr;42(2):70-5 - PubMed
  60. Electroencephalogr Clin Neurophysiol Suppl. 1999;52:97-103 - PubMed
  61. J Physiol. 1996 Jan 15;490 ( Pt 2):529-36 - PubMed
  62. Med Sci Sports Exerc. 2005 Sep;37(9):1594-600 - PubMed
  63. Phys Ther. 1987 Feb;67(2):206-7 - PubMed

Publication Types

Grant support