Display options
Share it on

Oncoscience. 2015 May 19;2(5):555-66. doi: 10.18632/oncoscience.166. eCollection 2015.

TALEN-mediated apc mutation in Xenopus tropicalis phenocopies familial adenomatous polyposis.

Oncoscience

Tom Van Nieuwenhuysen, Thomas Naert, Hong Thi Tran, Griet Van Imschoot, Sarah Geurs, Ellen Sanders, David Creytens, Frans Van Roy, Kris Vleminckx

Affiliations

  1. Developmental Biology Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
  2. Molecular Cell Biology Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium ; Inflammation Research Center, Flanders Institute for Biotechnology (VIB), Ghent, Belgium.
  3. Department of Pathology, Ghent University and Ghent University Hospital, Ghent, Belgium.
  4. Developmental Biology Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium ; Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium.

PMID: 26097888 PMCID: PMC4468341 DOI: 10.18632/oncoscience.166

Abstract

Truncating mutations in the tumor suppressor gene adenomatous polyposis coli (APC) are the initiating step in the vast majority of sporadic colorectal cancers, and they underlie familial adenomatous polyposis (FAP) syndromes. Modeling of APC- driven tumor formation in the mouse has contributed substantially to our mechanistic understanding of the associated disease, but additional models are needed to explore therapeutic opportunities and overcome current limitations of mouse models. We report on a novel and penetrant genetic cancer model in Xenopus tropicalis, an aquatic tetrapod vertebrate with external development, diploid genome and short life cycle. Tadpoles and froglets derived from embryos injected with TAL effector nucleases targeting the apc gene rapidly developed intestinal hyperplasia and other neoplasms observed in FAP patients, including desmoid tumors and medulloblastomas. Bi-allelic apc mutations causing frame shifts were detected in the tumors, which displayed activation of the Wnt/β-catenin pathway and showed increased cellular proliferation. We further demonstrate that simultaneous double bi-allelic mutation of apc and a non-relevant gene is possible in the neoplasias, opening the door for identification and characterization of effector or modifier genes in tumors expressing truncated apc. Our results demonstrate the power of modeling human cancer in Xenopus tropicalis using mosaic TALEN-mediated bi-allelic gene disruption.

Keywords: APC; Intestinal cancer; Wnt signaling; animal model; desmoid tumors

References

  1. Crit Rev Oncol Hematol. 2007 Feb;61(2):153-61 - PubMed
  2. Biochim Biophys Acta. 2012 Jan;1825(1):49-63 - PubMed
  3. J Mol Evol. 2004 Aug;59(2):190-203 - PubMed
  4. Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17484-9 - PubMed
  5. Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16160-5 - PubMed
  6. Methods. 2014 Apr 1;66(3):422-32 - PubMed
  7. Nucleic Acids Res. 2011 Jul;39(12):e82 - PubMed
  8. Nature. 2003 Oct 9;425(6958):633-7 - PubMed
  9. Br J Surg. 1996 Nov;83(11):1494-504 - PubMed
  10. Cold Spring Harb Perspect Biol. 2012 Nov 01;4(11):null - PubMed
  11. Dis Model Mech. 2014 Nov;7(11):1215-25 - PubMed
  12. Dev Biol. 1987 Feb;119(2):560-78 - PubMed
  13. Neoplasia. 2013 Jul;15(7):712-9 - PubMed
  14. Mutat Res. 2010 Nov 10;693(1-2):32-45 - PubMed
  15. Exp Cell Res. 2001 Mar 10;264(1):126-34 - PubMed
  16. Am J Pathol. 1996 Aug;149(2):381-7 - PubMed
  17. Biochim Biophys Acta. 2013 Aug;1836(1):80-9 - PubMed
  18. Proc Natl Acad Sci U S A. 2005 Mar 8;102(10):3720-5 - PubMed
  19. Nat Rev Drug Discov. 2014 Jul;13(7):513-32 - PubMed
  20. Crit Rev Oncog. 1995;6(3-6):291-303 - PubMed
  21. Nature. 2013 Apr 25;496(7446):494-7 - PubMed
  22. Nature. 2015 Jan 22;517(7535):497-500 - PubMed
  23. Dis Model Mech. 2014 Jan;7(1):63-71 - PubMed
  24. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W117-22 - PubMed
  25. EMBO Rep. 2006 Apr;7(4):444-9 - PubMed
  26. Development. 2014 Nov;141(21):4042-54 - PubMed
  27. Hum Mol Genet. 1992 Jul;1(4):229-33 - PubMed
  28. Nat Methods. 2011 Jan;8(1):74-9 - PubMed
  29. Gastroenterology. 1997 Oct;113(4):1159-62 - PubMed
  30. Bioorg Med Chem. 2013 Jul 15;21(14):4020-6 - PubMed
  31. Nat Rev Cancer. 2013 Sep;13(9):624-36 - PubMed
  32. Science. 2010 Apr 30;328(5978):633-6 - PubMed
  33. PLoS One. 2010 Oct 22;5(10):e13605 - PubMed
  34. Brief Funct Genomic Proteomic. 2008 Nov;7(6):454-9 - PubMed
  35. Biol Open. 2012 Dec 15;1(12):1273-6 - PubMed
  36. Orphanet J Rare Dis. 2009 Oct 12;4:22 - PubMed
  37. Adv Drug Deliv Rev. 2014 Apr;69-70:225-46 - PubMed
  38. Adv Exp Med Biol. 2009;656:85-106 - PubMed
  39. Fam Cancer. 2006;5(3):275-85; discussion 287-8 - PubMed
  40. Int J Oncol. 1993 Aug;3(2):341-5 - PubMed
  41. Pathol Res Pract. 2008;204(7):479-90 - PubMed

Publication Types