Display options
Share it on

Inflamm Cell Signal. 2014;1(6):e561. doi: 10.14800/ics.561.

Chronic High Fat Diet Consumption Impairs Metabolic Health of Male Mice.

Inflammation and cell signaling

Eugenia Morselli, Alfredo Criollo, Carlos Rodriguez-Navas, Deborah J Clegg

Affiliations

  1. Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
  2. Laboratory of Cellular and Molecular Biology, Research Institute of Dental Science and Advanced Center for Chronic Diseases (ACCDiS), Faculty of Dentistry, University of Chile, 8380492 Santiago, Chile.
  3. Department of Molecular Genetics, University of Texas Southwestern Medical Center, 75390-8857, Dallas, Texas, USA.
  4. Cedars-Sinai Diabetes and Obesity Research Institute, Department of Biomedical Research, 90048, Los Angeles, California, USA.

PMID: 26046098 PMCID: PMC4451571 DOI: 10.14800/ics.561

Abstract

We show that chronic high fat diet (HFD) feeding affects the hypothalamus of male but not female mice. In our study we demonstrate that palmitic acid and sphingolipids accumulate in the central nervous system of HFD-fed males. Additionally, we show that HFD-feeding reduces proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) thus reducing estrogen receptor α (ERα) and driving hypothalamic inflammation in male but not female mice. Hypothalamic inflammation correlates with markers of metabolic dysregulation as indicated by dysregulation in glucose intolerance and myocardial function. Lastly, we demonstrate that there are blockages in mitophagy and lipophagy in hypothalamic tissues in males. Our data suggest there is a sexually dimorphic response to chronic HDF exposure, females; despite gaining the same amount of body weight following HFD-feeding, appear to be protected from the adverse metabolic effects of the HFD.

Keywords: 17-β estradiol; Autophagy; Estrogen Receptor α; Lipophagy; Mitophagy; Palmitic Acid; Peroxisome Proliferator-Activated Receptor-Gamma Coactivator-1α

References

  1. Cell Metab. 2011 Oct 5;14(4):453-65 - PubMed
  2. Prog Lipid Res. 2006 Jan;45(1):42-72 - PubMed
  3. Nature. 2009 Apr 30;458(7242):1131-5 - PubMed
  4. Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9614-9 - PubMed
  5. J Clin Invest. 2012 Jan;122(1):153-62 - PubMed
  6. Biochem Cell Biol. 2012 Apr;90(2):124-41 - PubMed
  7. Cell Rep. 2014 Oct 23;9(2):633-45 - PubMed
  8. Annu Rev Immunol. 2011;29:415-45 - PubMed
  9. Endocrinology. 2005 Oct;146(10):4192-9 - PubMed
  10. Endocr Rev. 2006 Dec;27(7):728-35 - PubMed
  11. J Biol Chem. 2011 Sep 16;286(37):32324-32 - PubMed
  12. Front Neuroendocrinol. 2009 Aug;30(3):396-404 - PubMed
  13. J Biol Chem. 2000 May 26;275(21):16302-8 - PubMed
  14. Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2501-6 - PubMed
  15. J Clin Invest. 2009 Sep;119(9):2577-89 - PubMed
  16. Cell Metab. 2011 May 4;13(5):495-504 - PubMed
  17. Nature. 2011 Jan 20;469(7330):323-35 - PubMed
  18. Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12729-34 - PubMed
  19. Endocrinology. 2014 Aug;155(8):2831-44 - PubMed
  20. Proc Nutr Soc. 2012 Nov;71(4):521-33 - PubMed
  21. J Mol Biol. 2005 Apr 15;347(5):921-34 - PubMed

Publication Types

Grant support