Display options
Share it on

J Leuk (Los Angel). 2014 Dec;2(5). doi: 10.4172/2329-6917.1000160.

Acidosis Sensing Receptor GPR65 Correlates with Anti-Apoptotic Bcl-2 Family Member Expression in CLL Cells: Potential Implications for the CLL Microenvironment.

Journal of leukemia (Los Angeles, Calif.)

Ashley E Rosko, Karen S McColl, Fei Zhong, Christopher B Ryder, Ming-Jin Chang, Abdus Sattar, Paolo F Caimi, Brian T Hill, Sayer Al-Harbi, Alexandru Almasan, Clark W Distelhorst

Affiliations

  1. Division of Hematology-Oncology, University Hospitals Case Medical Center, Cleveland, Ohio, USA ; Division of Hematology, Department of Medicine, Ohio State University College of Medicine, Columbus, Ohio, USA.
  2. Division of Hematology-Oncology, Case Western Reserve School of Medicine, Cleveland, USA.
  3. Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA.
  4. Division of Hematology-Oncology, University Hospitals Case Medical Center, Cleveland, Ohio, USA ; Division of Hematology-Oncology, Case Western Reserve School of Medicine, Cleveland, USA ; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Ohio, USA.
  5. Department of Hematologic Oncology and Blood Disorders, Cleveland Clinic, Cleveland, Ohio, USA ; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Ohio, USA.
  6. Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
  7. Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA ; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Ohio, USA.

PMID: 25984552 PMCID: PMC4431653 DOI: 10.4172/2329-6917.1000160

Abstract

The tumor microenvironment is generally an acidic environment, yet the effect of extracellular acidosis on chronic lymphocytic leukemia (CLL) is not well established. Here we are the first to report that the extracellular acid sensing G-protein coupled receptor, GPR65, is expressed in primary CLL cells where its level correlate strongly with anti-apoptotic Bcl-2 family member levels. GPR65 expression is found normally within the lymphoid lineage and has not been previously reported in CLL. We demonstrate a wide range of GPR65 mRNA expression among CLL 87 patient samples. The correlation between GPR65 mRNA levels and Bcl-2 mRNA levels is particularly strong (r=0.8063, p= <0.001). The correlation extends to other anti-apoptotic Bcl-2 family members, Mcl-1 (r=0.4847, p=0.0010) and Bcl-xl (r=0.3411, p=0.0252), although at lower levels of significance. No correlation is detected between GPR65 and levels of the pro-apoptotic proteins BIM, PUMA or NOXA. GPR65 expression also correlates with the favorable prognostic marker of 13q deletion. The present findings suggest the acid sensing receptor GPR65 may be of significance to allow CLL tolerance of extracellular acidosis. The correlation of GPR65 with Bcl-2 suggests a novel cytoprotective mechanism that enables CLL cell adaptation to acidic extracellular conditions. These findings suggest the potential value of targeting GPR65 therapeutically.

Keywords: Chronic lymphocytic leukemia; GPR65G protein-coupled receptor 65 Bcl-2B-cell Lymphoma 2; Microenvironment; TDAG8T cell death associated gene

References

  1. Nat Rev Cancer. 2010 Jan;10(1):37-50 - PubMed
  2. J Biomed Inform. 2009 Apr;42(2):377-81 - PubMed
  3. Hematol Oncol Clin North Am. 2013 Apr;27(2):173-206 - PubMed
  4. Bioinformatics. 2008 Feb 1;24(3):325-32 - PubMed
  5. Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17309-14 - PubMed
  6. Nat Rev Clin Oncol. 2009 Jul;6(7):405-18 - PubMed
  7. Nat Rev Cancer. 2004 Nov;4(11):891-9 - PubMed
  8. Mol Pharm. 2011 Dec 5;8(6):2032-8 - PubMed
  9. J Biol Chem. 2005 Mar 11;280(10):9083-7 - PubMed
  10. Curr Opin Oncol. 2012 Nov;24(6):643-9 - PubMed
  11. Nat Rev Cancer. 2008 Jan;8(1):56-61 - PubMed
  12. Adv Exp Med Biol. 1989;248:835-45 - PubMed
  13. Blood. 2007 Jun 1;109(11):4944-51 - PubMed
  14. Semin Cancer Biol. 2010 Dec;20(6):370-6 - PubMed
  15. Cell. 2011 Mar 4;144(5):646-74 - PubMed
  16. Hematology Am Soc Hematol Educ Program. 2011;2011:96-103 - PubMed
  17. Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15524-9 - PubMed
  18. Genome Biol. 2010;11(8):R90 - PubMed
  19. Int J Hyperthermia. 1995 Mar-Apr;11(2):211-6 - PubMed
  20. Nature. 2003 Sep 4;425(6953):93-8 - PubMed
  21. J Biol Chem. 2012 Aug 10;287(33):27863-75 - PubMed
  22. Acta Pharmacol Sin. 2005 Dec;26(12):1435-41 - PubMed
  23. Blood. 2007 May 1;109(9):3812-9 - PubMed
  24. Cell Signal. 2005 Dec;17(12):1466-76 - PubMed
  25. RNA. 2008 Jun;14(6):1012-7 - PubMed
  26. Front Biosci. 2005 May 01;10 :1581-96 - PubMed
  27. Cancer Cell. 2008 Jun;13(6):472-82 - PubMed
  28. J Biol Chem. 2004 Oct 29;279(44):45626-33 - PubMed
  29. Cancer Treat Rev. 2003 Dec;29(6):541-9 - PubMed
  30. Nat Rev Cancer. 2011 Aug 11;11(9):671-7 - PubMed
  31. Science. 2009 May 22;324(5930):1029-33 - PubMed
  32. Oncogene. 2004 Aug 19;23(37):6299-303 - PubMed
  33. Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13944-9 - PubMed
  34. Munch Med Wochenschr. 1961 Dec 22;103:2504-6 - PubMed
  35. Br J Cancer. 1991 Sep;64(3):425-7 - PubMed
  36. Semin Radiat Oncol. 1998 Jul;8(3):176-82 - PubMed
  37. Mol Cancer Res. 2006 Feb;4(2):61-70 - PubMed
  38. Br J Haematol. 2012 Sep;158(5):589-99 - PubMed
  39. NMR Biomed. 2011 Jul;24(6):582-91 - PubMed
  40. Radiology. 1989 Mar;170(3 Pt 1):875-8 - PubMed
  41. Nat Med. 2008 Nov;14(11):1271-7 - PubMed
  42. Blood. 2011 Sep 29;118(13):3579-90 - PubMed

Publication Types

Grant support