Display options
Share it on

Nat Commun. 2015 Jun 23;6:7448. doi: 10.1038/ncomms8448.

Arbitrary lattice symmetries via block copolymer nanomeshes.

Nature communications

Pawel W Majewski, Atikur Rahman, Charles T Black, Kevin G Yager

Affiliations

  1. Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA.

PMID: 26100566 PMCID: PMC4557284 DOI: 10.1038/ncomms8448

Abstract

Self-assembly of block copolymers is a powerful motif for spontaneously forming well-defined nanostructures over macroscopic areas. Yet, the inherent energy minimization criteria of self-assembly give rise to a limited library of structures; diblock copolymers naturally form spheres on a cubic lattice, hexagonally packed cylinders and alternating lamellae. Here, we demonstrate multicomponent nanomeshes with any desired lattice symmetry. We exploit photothermal annealing to rapidly order and align block copolymer phases over macroscopic areas, combined with conversion of the self-assembled organic phase into inorganic replicas. Repeated photothermal processing independently aligns successive layers, providing full control of the size, symmetry and composition of the nanoscale unit cell. We construct a variety of symmetries, most of which are not natively formed by block copolymers, including squares, rhombuses, rectangles and triangles. In fact, we demonstrate all possible two-dimensional Bravais lattices. Finally, we elucidate the influence of nanostructure on the electrical and optical properties of nanomeshes.

References

  1. Adv Mater. 2012 Jul 10;24(26):3526-31 - PubMed
  2. Nano Lett. 2007 Sep;7(9):2789-94 - PubMed
  3. Adv Mater. 2014 Feb;26(5):791-5 - PubMed
  4. Nat Mater. 2004 Nov;3(11):816-22 - PubMed
  5. Nat Nanotechnol. 2007 Aug;2(8):500-6 - PubMed
  6. Adv Mater. 2010 Dec 1;22(45):5129-33 - PubMed
  7. Sci Rep. 2013 Nov 12;3:3190 - PubMed
  8. Nature. 2003 Jul 24;424(6947):411-4 - PubMed
  9. Nat Nanotechnol. 2010 Apr;5(4):256-60 - PubMed
  10. ACS Nano. 2008 Mar;2(3):489-501 - PubMed
  11. ACS Nano. 2014 Oct 28;8(10):10582-8 - PubMed
  12. Chem Rev. 2010 Jan;110(1):146-77 - PubMed
  13. Nano Lett. 2014 Oct 8;14(10):5698-705 - PubMed
  14. ACS Nano. 2012 Nov 27;6(11):10335-42 - PubMed
  15. Science. 2012 Jun 8;336(6086):1294-8 - PubMed
  16. ACS Nano. 2015 Apr 28;9(4):3896-906 - PubMed
  17. ACS Nano. 2013 Aug 27;7(8):6747-57 - PubMed
  18. Science. 2008 Oct 17;322(5900):429-32 - PubMed
  19. Nat Mater. 2014 Jul;13(7):694-8 - PubMed

Publication Types