Display options
Share it on

Biotechnol Biotechnol Equip. 2014 Jan 02;28(1):68-76. doi: 10.1080/13102818.2014.901683.

Assessment of genetic variation in Bulgarian tomato (.

Biotechnology, biotechnological equipment

Elena Todorovska, Albena Ivanova, Daniela Ganeva, Galina Pevicharova, Emil Molle, Bojin Bojinov, Mariana Radkova, Zhivko Danailov

Affiliations

  1. Agricultural Academy, AgroBioInstitute , Sofia , Bulgaria.
  2. Agricultural Academy, Maritsa Vegetable Crops Research Institute , Plovdiv , Bulgaria.
  3. Faculty of Ecology and Landscape Architecture, University of Forestry, Sofia , Bulgaria.
  4. Faculty of Agronomy, Agricultural University, Plovdiv , Bulgaria.
  5. Bulgarian Academy of Sciences, Institute of Plant Physiology and Genetics , Sofia , Bulgaria.

PMID: 26019490 PMCID: PMC4433931 DOI: 10.1080/13102818.2014.901683

Abstract

Genetic variability in modern crops is limited due to domestication and selection processes. Genetic variation in eight Bulgarian tomato varieties and breeding lines (variety Plovdivska karotina, variety IZK Alya, L21β, L53β, L1140, L1116, L975, L984) differing in their morphological and biochemical composition was assessed using a highly efficient and low-cost fluorescent simple sequence repeat (SSR) genotyping platform. Genotyping was conducted with 165 publicly available microsatellite markers developed from different research groups under a number of projects in tomato (SOL Genomics SSRs, Kazusa TGS and TES, SLM, TMS and LEMDDNa) among which only five (3.03%) failed to amplify the expected PCR fragments. Of the remaining markers, 81 (50.62%) were polymorphic in the whole collection of eight genotypes. Among the marker groups used, SLM markers were most polymorphic, followed by TMS and SOL Genomics SSR markers. The total number of amplified alleles was 299, with a mean of 1.869; and the average polymorphic information content (

Keywords: SSR; genetic distance; genetic diversity; phylogenetic relationships; tomato (Solanum lycopersicum L.)

References

  1. Am J Hum Genet. 1980 May;32(3):314-31 - PubMed
  2. Genetics. 1992 Dec;132(4):1141-60 - PubMed
  3. J Genet Genomics. 2008 Jun;35(6):373-9 - PubMed
  4. Proc Natl Acad Sci U S A. 2001 May 22;98(11):6511-5 - PubMed
  5. Theor Appl Genet. 2002 Feb;104(2-3):229-235 - PubMed
  6. Nat Rev Genet. 2004 Jan;5(1):63-9 - PubMed
  7. Nucleic Acids Res. 1980 Oct 10;8(19):4321-5 - PubMed
  8. BMC Genomics. 2008 Feb 18;9:80 - PubMed
  9. Genome. 2006 Jun;49(6):648-56 - PubMed
  10. Genome. 1993 Jun;36(3):619-30 - PubMed
  11. Science. 2000 Jul 7;289(5476):85-8 - PubMed
  12. Science. 1994 Nov 4;266(5186):789-93 - PubMed
  13. Theor Appl Genet. 1990 Oct;80(4):437-48 - PubMed
  14. Development. 1998 Jun;125(11):1979-89 - PubMed
  15. Plant Cell. 1998 Aug;10(8):1307-19 - PubMed
  16. Plant Mol Biol. 2003 Jul;52(5):1037-49 - PubMed
  17. Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):13302-6 - PubMed
  18. Science. 1993 Nov 26;262(5138):1432-6 - PubMed
  19. Theor Appl Genet. 2004 Aug;109(3):523-33 - PubMed
  20. PLoS One. 2012;7(7):e40563 - PubMed
  21. PLoS One. 2012;7(9):e45520 - PubMed
  22. Theor Appl Genet. 2005 Jul;111(2):291-312 - PubMed
  23. Genome. 1999 Jun;42(3):536-44 - PubMed
  24. Bioinformatics. 2005 May 1;21(9):2128-9 - PubMed
  25. Genome. 2004 Jun;47(3):510-8 - PubMed
  26. Theor Appl Genet. 1996 Jun;92(8):957-65 - PubMed
  27. Theor Appl Genet. 2003 Jan;106(2):363-73 - PubMed
  28. Cell. 1996 Feb 9;84(3):451-9 - PubMed
  29. Science. 2008 Mar 14;319(5869):1527-30 - PubMed
  30. Theor Appl Genet. 2010 Aug;121(4):731-9 - PubMed
  31. Genetics. 1997 Oct;147(2):861-77 - PubMed
  32. Theor Appl Genet. 2005 Mar;110(5):819-31 - PubMed
  33. Theor Appl Genet. 2008 Mar;116(5):657-69 - PubMed

Publication Types