Display options
Share it on

Brain Sci. 2015 Jun 19;5(2):241-57. doi: 10.3390/brainsci5020241.

Hippocampal Cortactin Levels are Reduced Following Spatial Working Memory Formation, an Effect Blocked by Chronic Calpain Inhibition.

Brain sciences

Mikel L Olson, Anna E Ingebretson, Katherine M Harmelink

Affiliations

  1. Department of Psychology and Program in Neuroscience, Concordia College, Moorhead, MN 56562, USA. [email protected].
  2. Department of Psychology and Program in Neuroscience, Concordia College, Moorhead, MN 56562, USA. [email protected].
  3. Department of Psychology and Program in Neuroscience, Concordia College, Moorhead, MN 56562, USA. [email protected].

PMID: 26103422 PMCID: PMC4493467 DOI: 10.3390/brainsci5020241

Abstract

The mechanism by which the hippocampus facilitates declarative memory formation appears to involve, among other things, restructuring of the actin cytoskeleton within neuronal dendrites. One protein involved in this process is cortactin, which is an important link between extracellular signaling and cytoskeletal reorganization. In this paper, we demonstrate that total hippocampal cortactin, as well as Y421-phosphorylated cortactin are transiently reduced following spatial working memory formation in the radial arm maze (RAM). Because cortactin is a substrate of the cysteine protease calpain, we also assessed the effect of chronic calpain inhibition on RAM performance and cortactin expression. Calpain inhibition impaired spatial working memory and blocked the reduction in hippocampal cortactin levels following RAM training. These findings add to a growing body of research implicating cortactin and calpain in hippocampus-dependent memory formation.

Keywords: calpain; cortactin; hippocampus; radial arm maze; spatial working memory

References

  1. Proc Natl Acad Sci U S A. 2004 Oct 5;101(40):14515-20 - PubMed
  2. Brain Res. 1990 Nov 26;534(1-2):317-20 - PubMed
  3. Neuropsychologia. 1979;17(6):669-82 - PubMed
  4. J Biol Chem. 1997 Aug 1;272(31):19248-52 - PubMed
  5. Neurosci Lett. 1994 Feb 14;167(1-2):149-52 - PubMed
  6. J Neurosci. 1997 Mar 1;17(5):1880-90 - PubMed
  7. J Neurosci. 2003 Dec 17;23(37):11759-69 - PubMed
  8. Biochem Soc Trans. 2004 Dec;32(Pt 6):1110-2 - PubMed
  9. J Cell Biol. 2000 Oct 2;151(1):29-40 - PubMed
  10. Neurosci Lett. 2006 Jun 12;400(3):191-6 - PubMed
  11. Brain Res. 1990 Oct 15;530(1):91-5 - PubMed
  12. Nat Neurosci. 2002 Feb;5(2):162-8 - PubMed
  13. J Biol Chem. 1998 Oct 2;273(40):25770-6 - PubMed
  14. J Clin Invest. 2008 Aug;118(8):2796-807 - PubMed
  15. Behav Neural Biol. 1984 Jan;40(1):58-69 - PubMed
  16. Nat Neurosci. 2004 Oct;7(10):1104-12 - PubMed
  17. EMBO J. 2009 Feb 4;28(3):248-60 - PubMed
  18. Brain Res. 2004 Oct 8;1023(1):1-14 - PubMed
  19. Mol Neurobiol. 2010 Oct;42(2):143-50 - PubMed
  20. Psychopharmacology (Berl). 1996 Apr;124(3):288-90 - PubMed
  21. Neuroreport. 2006 Sep 18;17(13):1453-7 - PubMed
  22. J Neurosci. 2012 May 23;32(21):7403-13 - PubMed
  23. Nat Cell Biol. 2001 Mar;3(3):259-66 - PubMed
  24. Cell. 2007 Mar 23;128(6):1219-29 - PubMed
  25. Regul Pept. 2008 Feb 7;146(1-3):19-25 - PubMed
  26. J Neurosci. 2013 Jul 17;33(29):11811-6 - PubMed
  27. Behav Brain Res. 2008 Jan 10;186(1):41-7 - PubMed
  28. Mol Biol Cell. 2006 Jan;17(1):239-50 - PubMed
  29. Learn Mem. 1996 Sep-Oct;3(2-3):209-17 - PubMed
  30. J Neurochem. 2006 Mar;96(5):1227-41 - PubMed
  31. Nature. 1995 Jan 12;373(6510):151-5 - PubMed
  32. J Biol Chem. 1997 May 23;272(21):13911-5 - PubMed
  33. Eur J Neurosci. 2005 Dec;22(12 ):2985-94 - PubMed
  34. J Cell Sci. 2012 Apr 1;125(Pt 7):1621-6 - PubMed
  35. Curr Neurol Neurosci Rep. 2010 May;10(3):207-14 - PubMed
  36. Behav Neurosci. 1993 Feb;107(1):3-22 - PubMed
  37. J Neurosci. 2008 May 28;28(22):5740-51 - PubMed
  38. Physiology (Bethesda). 2006 Oct;21:352-61 - PubMed
  39. J Neurosci Methods. 2008 Jul 30;172(2):250-4 - PubMed

Publication Types

Grant support