Display options
Share it on

Front Mol Biosci. 2014 Nov 06;1:21. doi: 10.3389/fmolb.2014.00021. eCollection 2014.

Challenging muscle homeostasis uncovers novel chaperone interactions in Caenorhabditis elegans.

Frontiers in molecular biosciences

Anna Frumkin, Shiran Dror, Wojciech Pokrzywa, Yael Bar-Lavan, Ido Karady, Thorsten Hoppe, Anat Ben-Zvi

Affiliations

  1. Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Beer Sheva, Israel.
  2. Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne Cologne, Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, CECAD Research Center, University of Cologne Cologne, Germany.

PMID: 25988162 PMCID: PMC4428482 DOI: 10.3389/fmolb.2014.00021

Abstract

Proteome stability is central to cellular function and the lifespan of an organism. This is apparent in muscle cells, where incorrect folding and assembly of the sarcomere contributes to disease and aging. Apart from the myosin-assembly factor UNC-45, the complete network of chaperones involved in assembly and maintenance of muscle tissue is currently unknown. To identify additional factors required for sarcomere quality control, we performed genetic screens based on suppressed or synthetic motility defects in Caenorhabditis elegans. In addition to ethyl methyl sulfonate-based mutagenesis, we employed RNAi-mediated knockdown of candidate chaperones in unc-45 temperature-sensitive mutants and screened for impaired movement at permissive conditions. This approach confirmed the cooperation between UNC-45 and Hsp90. Moreover, the screens identified three novel co-chaperones, CeHop (STI-1), CeAha1 (C01G10.8) and Cep23 (ZC395.10), required for muscle integrity. The specific identification of Hsp90 and Hsp90 co-chaperones highlights the physiological role of Hsp90 in myosin folding. Our work thus provides a clear example of how a combination of mild perturbations to the proteostasis network can uncover specific quality control modules.

Keywords: Caenorhabditis elegans; DAF-21; Hsp90; UNC-45; chaperones; misfolding; myosin; proteostasis

References

  1. Genetics. 2011 Jul;188(3):549-64 - PubMed
  2. Biochemistry. 2014 Apr 22;53(15):2505-14 - PubMed
  3. Nature. 1987 Jul 30-Aug 5;328(6129):378-9 - PubMed
  4. Dev Biol. 2007 Aug 1;308(1):133-43 - PubMed
  5. PLoS Genet. 2013;9(12 ):e1004024 - PubMed
  6. Science. 2006 Mar 10;311(5766):1471-4 - PubMed
  7. Science. 2002 Jan 25;295(5555):669-71 - PubMed
  8. Nature. 1988 May 26;333(6171):330-4 - PubMed
  9. EMBO J. 2013 May 15;32(10):1451-68 - PubMed
  10. J Biol Chem. 2010 Dec 24;285(52):40921-32 - PubMed
  11. Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14914-9 - PubMed
  12. Nature. 1991 Jul 4;352(6330):36-42 - PubMed
  13. PLoS Genet. 2009 Jun;5(6):e1000537 - PubMed
  14. Circ Res. 2011 Oct 14;109(9):1082-95 - PubMed
  15. J Mol Biol. 2013 Aug 23;425(16):2922-39 - PubMed
  16. Methods. 2001 Dec;25(4):402-8 - PubMed
  17. Bioessays. 1999 Oct;21(10):813-23 - PubMed
  18. J Mol Biol. 2009 Jul 24;390(4):604-17 - PubMed
  19. Genetics. 1974 May;77(1):71-94 - PubMed
  20. Trends Cell Biol. 2008 Jun;18(6):264-72 - PubMed
  21. Nat Genet. 2012 Feb 26;44(4):450-5, S1-2 - PubMed
  22. PLoS Genet. 2009 Mar;5(3):e1000399 - PubMed
  23. PLoS One. 2011;6(9):e25485 - PubMed
  24. Nature. 2002 Oct 24;419(6909):808-14 - PubMed
  25. Nat Rev Mol Cell Biol. 2010 Aug;11(8):579-92 - PubMed
  26. Trends Biochem Sci. 2013 May;38(5):253-62 - PubMed
  27. Cell Mol Life Sci. 2014 Sep;71(17):3311-25 - PubMed
  28. Nature. 2011 Apr 14;472(7342):226-9 - PubMed
  29. Curr Genomics. 2014 Apr;15(2):122-9 - PubMed
  30. Biochemistry. 1991 Feb 12;30(6):1586-91 - PubMed
  31. Cell. 1999 Jun 11;97(6):755-65 - PubMed
  32. Trends Biochem Sci. 2012 Dec;37(12):517-25 - PubMed
  33. Circulation. 2010 Oct 26;122(17):1740-51 - PubMed
  34. Nature. 1989 Dec 21-28;342(6252):884-9 - PubMed
  35. PLoS One. 2011;6(5):e19937 - PubMed
  36. Aging Cell. 2013 Oct;12(5):814-22 - PubMed
  37. Cell. 1986 Sep 26;46(7):959-61 - PubMed
  38. Biochem Biophys Res Commun. 1997 Dec 29;241(3):687-92 - PubMed
  39. J Vis Exp. 2013 Dec 18;(82):e50840 - PubMed
  40. Int J Biochem Cell Biol. 2012 Oct;44(10):1588-92 - PubMed
  41. Nature. 1978 Oct 5;275(5679):416-20 - PubMed
  42. Cardiovasc Res. 2009 Feb 15;81(3):439-48 - PubMed
  43. J Biol Chem. 2000 Mar 31;275(13):9510-7 - PubMed
  44. Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):E1481-90 - PubMed
  45. Nature. 1999 Aug 12;400(6745):693-6 - PubMed
  46. EMBO J. 1993 Nov;12(11):4137-44 - PubMed
  47. J Cell Sci. 2004 Feb 1;117(Pt 4):641-52 - PubMed
  48. Cell. 2013 Jan 17;152(1-2):183-95 - PubMed
  49. Cell. 2011 Jan 7;144(1):67-78 - PubMed
  50. Biochim Biophys Acta. 2012 Mar;1823(3):712-21 - PubMed
  51. PLoS Genet. 2011 Jun;7(6):e1002119 - PubMed
  52. PLoS One. 2014 Jan 21;9(1):e85964 - PubMed
  53. Science. 2008 Feb 15;319(5865):916-9 - PubMed
  54. J Mol Biol. 2009 Aug 21;391(3):621-34 - PubMed
  55. J Biol Chem. 2014 May 9;289(19):13155-67 - PubMed
  56. Science. 2009 Mar 27;323(5922):1693-7 - PubMed
  57. FEBS J. 2005 Apr;272(8):2037-49 - PubMed

Publication Types

Grant support