Display options
Share it on

Front Cell Neurosci. 2015 Jun 09;9:214. doi: 10.3389/fncel.2015.00214. eCollection 2015.

Facial stimulation induces long-term depression at cerebellar molecular layer interneuron-Purkinje cell synapses in vivo in mice.

Frontiers in cellular neuroscience

Yan-Hua Bing, Mao-Cheng Wu, Chun-Ping Chu, De-Lai Qiu

Affiliations

  1. Cellular Function Research Center, Yanbian University Yanji, Jilin Province, China ; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University Yanji, Jilin Province, China.
  2. Cellular Function Research Center, Yanbian University Yanji, Jilin Province, China ; Department of Osteology, Affiliated Hospital of Yanbian University Yanji, Jilin Province, China.
  3. Cellular Function Research Center, Yanbian University Yanji, Jilin Province, China.

PMID: 26106296 PMCID: PMC4460530 DOI: 10.3389/fncel.2015.00214

Abstract

Cerebellar long-term synaptic plasticity has been proposed to provide a cellular mechanism for motor learning. Numerous studies have demonstrated the induction and mechanisms of synaptic plasticity at parallel fiber-Purkinje cell (PF-PC), parallel fiber-molecular layer interneurons (PF-MLI) and mossy fiber-granule cell (MF-GC) synapses, but no study has investigated sensory stimulation-evoked synaptic plasticity at MLI-PC synapses in the cerebellar cortex of living animals. We studied the expression and mechanism of MLI-PC GABAergic synaptic plasticity induced by a train of facial stimulation in urethane-anesthetized mice by cell-attached recordings and pharmacological methods. We found that 1 Hz, but not a 2 Hz or 4 Hz, facial stimulation induced a long-term depression (LTD) of GABAergic transmission at MLI-PC synapses, which was accompanied with a decrease in the stimulation-evoked pause of spike firing in PCs, but did not induce a significant change in the properties of the sensory-evoked spike events of MLIs. The MLI-PC GABAergic LTD could be prevented by blocking cannabinoid type 1 (CB1) receptors, and could be pharmacologically induced by a CB1 receptor agonist. Additionally, 1 Hz facial stimulation delivered in the presence of a metabotropic glutamate receptor 1 (mGluR1) antagonist, JNJ16259685, still induced the MLI-PC GABAergic LTD, whereas blocking N-methyl-D-aspartate (NMDA) receptors during 1 Hz facial stimulation abolished the expression of MLI-PC GABAergic LTD. These results indicate that sensory stimulation can induce an endocannabinoid (eCB)-dependent LTD of GABAergic transmission at MLI-PC synapses via activation of NMDA receptors in cerebellar cortical Crus II in vivo in mice. Our results suggest that the sensory stimulation-evoked MLI-PC GABAergic synaptic plasticity may play a critical role in motor learning in animals.

Keywords: NMDA receptor; cerebellar Purkinje cell; endocannabinoids receptor; in vivo cell-attached recording; molecular layer interneuron; plasticity; sensory stimulation

References

  1. Nature. 1992 Apr 16;356(6370):601-4 - PubMed
  2. Pflugers Arch. 2009 Feb;457(4):865-75 - PubMed
  3. Nat Neurosci. 2004 May;7(5):525-33 - PubMed
  4. J Physiol. 2007 Nov 15;585(Pt 1):91-101 - PubMed
  5. Neuron. 2007 Jun 7;54(5):801-12 - PubMed
  6. Learn Mem. 2011 Aug 15;18(9):545-53 - PubMed
  7. J Neurosci. 2007 Mar 28;27(13):3408-15 - PubMed
  8. J Neurosci. 2006 Jul 12;26(28):7395-404 - PubMed
  9. J Physiol. 1991 Mar;434:183-213 - PubMed
  10. J Neurosci. 2007 Oct 3;27(40):10797-809 - PubMed
  11. Neurosci Lett. 1982 Dec 13;33(3):253-8 - PubMed
  12. J Comp Neurol. 1994 Sep 1;347(1):150-60 - PubMed
  13. Nat Neurosci. 2009 Aug;12(8):1042-9 - PubMed
  14. J Physiol. 2009 Dec 15;587(Pt 24):5843-57 - PubMed
  15. Prog Brain Res. 2014;210:31-58 - PubMed
  16. Neuron. 2006 Sep 21;51(6):835-43 - PubMed
  17. Eur J Neurosci. 2014 May;39(10):1624-31 - PubMed
  18. J Neurosci. 2010 Nov 10;30(45):15330-5 - PubMed
  19. PLoS One. 2012;7(5):e37031 - PubMed
  20. J Neurosci. 2002 May 15;22(10):3969-76 - PubMed
  21. J Neurosci. 2006 Sep 27;26(39):9935-43 - PubMed
  22. J Neurochem. 2013 Jul;126(1):47-57 - PubMed
  23. Nat Neurosci. 2003 Oct;6(10 ):1048-57 - PubMed
  24. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23 ):13351-6 - PubMed
  25. J Neurosci. 2000 Jun 15;20(12):4423-34 - PubMed
  26. PLoS One. 2011;6(7):e22752 - PubMed
  27. J Neurosci. 2008 Jun 18;28(25):6354-9 - PubMed
  28. J Neurosci. 1994 Oct;14(10):6102-20 - PubMed
  29. Neuron. 1991 Apr;6(4):565-74 - PubMed
  30. Neuron. 2010 Aug 26;67(4):618-28 - PubMed
  31. PLoS One. 2012;7(4):e36184 - PubMed
  32. J Neurosci. 2007 Jun 20;27(25):6788-99 - PubMed
  33. Nat Rev Neurosci. 2012 Sep;13(9):619-35 - PubMed
  34. J Neurosci. 2013 Oct 23;33(43):17209-20 - PubMed
  35. Learn Mem. 2014 Nov 17;21(12):662-7 - PubMed
  36. Neuron. 2000 Aug;27(2):339-47 - PubMed
  37. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2662-5 - PubMed
  38. J Neurosci. 2002 Mar 1;22(5):1690-7 - PubMed
  39. Int Rev Neurobiol. 2014;117:39-51 - PubMed
  40. Annu Rev Neurosci. 2006;29:37-76 - PubMed
  41. EMBO J. 2012 Mar 7;31(5):1217-30 - PubMed
  42. Neurosci Lett. 2011 Jan 7;487(2):182-6 - PubMed
  43. Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3541-6 - PubMed
  44. Front Comput Neurosci. 2013 May 22;7:64 - PubMed
  45. Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):14126-31 - PubMed
  46. Front Cell Neurosci. 2014 Feb 18;8:42 - PubMed
  47. Pharmazie. 2015 Feb;70(2):129-34 - PubMed
  48. J Neurosci. 2011 Apr 13;31(15):5804-15 - PubMed
  49. Nat Neurosci. 2006 Jun;9(6):798-806 - PubMed
  50. Neurosci Lett. 2015 Jan 12;585:114-8 - PubMed
  51. Cerebellum. 2006;5(2):134-45 - PubMed

Publication Types