Display options
Share it on

Front Cell Neurosci. 2015 Jun 08;9:217. doi: 10.3389/fncel.2015.00217. eCollection 2015.

Emerging roles of Axin in cerebral cortical development.

Frontiers in cellular neuroscience

Tao Ye, Amy K Y Fu, Nancy Y Ip

Affiliations

  1. Division of Life Science, Molecular Neuroscience Center and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology Hong Kong, China.

PMID: 26106297 PMCID: PMC4458687 DOI: 10.3389/fncel.2015.00217

Abstract

Proper functioning of the cerebral cortex depends on the appropriate production and positioning of neurons, establishment of axon-dendrite polarity, and formation of proper neuronal connectivity. Deficits in any of these processes greatly impair neural functions and are associated with various human neurodevelopmental disorders including microcephaly, cortical heterotopias, and autism. The application of in vivo manipulation techniques such as in utero electroporation has resulted in significant advances in our understanding of the cellular and molecular mechanisms that underlie neural development in vivo. Axin is a scaffold protein that regulates neuronal differentiation and morphogenesis in vitro. Recent studies provide novel insights into the emerging roles of Axin in gene expression and cytoskeletal regulation during neurogenesis, neuronal polarization, and axon formation. This review summarizes current knowledge on Axin as a key molecular controller of cerebral cortical development.

Keywords: Axin; axon formation; cerebral cortex; cytoskeletal regulation; neurogenesis; polarization

References

  1. Curr Opin Cell Biol. 2008 Dec;20(6):707-15 - PubMed
  2. Neuron. 2000 Jul;27(1):33-44 - PubMed
  3. Annu Rev Neurosci. 2002;25:127-49 - PubMed
  4. Neuron. 2005 May 5;46(3):383-8 - PubMed
  5. Cell. 2009 Mar 20;136(6):1017-31 - PubMed
  6. Nature. 2005 Oct 27;437(7063):1370-5 - PubMed
  7. Nat Neurosci. 2001 Aug;4(8):781-2 - PubMed
  8. JAMA. 2011 Nov 9;306(18):2001-10 - PubMed
  9. Curr Opin Cell Biol. 2005 Dec;17(6):648-57 - PubMed
  10. Neuron. 2004 Mar 25;41(6):881-90 - PubMed
  11. Nat Rev Mol Cell Biol. 2005 Oct;6(10):777-88 - PubMed
  12. Nat Rev Neurosci. 2007 Jun;8(6):427-37 - PubMed
  13. Mol Cell Biol. 2001 Aug;21(15):5132-41 - PubMed
  14. EMBO J. 2004 Jun 2;23 (11):2235-45 - PubMed
  15. Cell Rep. 2014 Dec 11;9(5):1635-43 - PubMed
  16. Elife. 2014 Jul 29;3:e02663 - PubMed
  17. Nat Neurosci. 2004 Feb;7(2):136-44 - PubMed
  18. Nat Neurosci. 2001 Feb;4(2):143-50 - PubMed
  19. Cereb Cortex. 2009 Oct;19(10):2439-50 - PubMed
  20. J Cell Sci. 2005 Mar 1;118(Pt 5):993-1005 - PubMed
  21. Dev Biol. 2001 Dec 1;240(1):237-46 - PubMed
  22. EMBO J. 2006 Apr 19;25(8):1646-58 - PubMed
  23. Am J Hum Genet. 2000 May;66(5):1705-9 - PubMed
  24. Neuron. 2013 Aug 21;79(4):665-79 - PubMed
  25. J Neurosci. 2011 Sep 21;31(38):13613-24 - PubMed
  26. Curr Opin Neurobiol. 2005 Feb;15(1):29-33 - PubMed
  27. Neuroscience. 2001;103(4):865-72 - PubMed
  28. J Cell Sci. 2004 Nov 15;117(Pt 24):5721-9 - PubMed
  29. Curr Biol. 2001 Jan 9;11(1):44-9 - PubMed
  30. Neuron. 2003 Mar 6;37(5):751-64 - PubMed
  31. J Neurosci. 2002 Apr 15;22(8):3161-73 - PubMed
  32. Neurosignals. 2004 May-Jun;13(3):99-113 - PubMed
  33. Neuron. 2012 Oct 18;76(2):353-69 - PubMed
  34. J Comp Neurol. 2002 Dec 2;454(1):1-14 - PubMed
  35. Genes Dev. 2008 Jan 1;22(1):106-20 - PubMed
  36. Nat Rev Neurosci. 2010 Aug;11(8):539-51 - PubMed
  37. J Neurosci. 2010 Dec 15;30(50):16766-76 - PubMed
  38. Cell. 2007 May 4;129(3):565-77 - PubMed
  39. ACS Chem Neurosci. 2012 Nov 21;3(11):963-71 - PubMed
  40. Cell Signal. 1999 Nov;11(11):777-88 - PubMed
  41. Genes Dev. 2001 Jun 1;15(11):1427-34 - PubMed
  42. Dev Neurosci. 2008;30(1-3):24-32 - PubMed
  43. Cell. 1997 Jul 11;90(1):181-92 - PubMed
  44. Prog Neurobiol. 2005 Sep-Oct;77(1-2):38-56 - PubMed
  45. Nature. 2009 Oct 1;461(7264):614-20 - PubMed
  46. Cell. 2007 Jan 12;128(1):29-43 - PubMed
  47. Cell. 2010 Jul 9;142(1):144-57 - PubMed
  48. Cell. 2005 Jan 14;120(1):137-49 - PubMed

Publication Types