Display options
Share it on

Front Psychol. 2015 Jun 09;6:679. doi: 10.3389/fpsyg.2015.00679. eCollection 2015.

Sensorimotor strategies for recognizing geometrical shapes: a comparative study with different sensory substitution devices.

Frontiers in psychology

Fernando Bermejo, Ezequiel A Di Paolo, Mercedes X Hüg, Claudia Arias

Affiliations

  1. Centro de Investigación y Transferencia en Acústica (CINTRA), Universidad Tecnológica Nacional - Facultad Regional Córdoba, Unidad Asociada de CONICET Córdoba, Argentina ; Facultad de Psicología, Universidad Nacional de Córdoba Córdoba, Argentina.
  2. Ikerbasque, Basque Foundation for Science Bilbao, Spain ; Department of Logic and Philosophy of Science, IAS-Research Center for Life, Mind, and Society, University of the Basque Country San Sebastián, Spain ; Department of Informatics, Centre for Computational Neuroscience and Robotics, University of Sussex Brighton, UK.
  3. Centro de Investigación y Transferencia en Acústica (CINTRA), Universidad Tecnológica Nacional - Facultad Regional Córdoba, Unidad Asociada de CONICET Córdoba, Argentina ; Facultad de Psicología, Universidad Nacional de Córdoba Córdoba, Argentina ; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Argentina.

PMID: 26106340 PMCID: PMC4460306 DOI: 10.3389/fpsyg.2015.00679

Abstract

The sensorimotor approach proposes that perception is constituted by the mastery of lawful sensorimotor regularities or sensorimotor contingencies (SMCs), which depend on specific bodily characteristics and on actions possibilities that the environment enables and constrains. Sensory substitution devices (SSDs) provide the user information about the world typically corresponding to one sensory modality through the stimulation of another modality. We investigate how perception emerges in novice adult participants equipped with vision-to-auditory SSDs while solving a simple geometrical shape recognition task. In particular, we examine the distinction between apparatus-related SMCs (those originating mostly in properties of the perceptual system) and object-related SMCs (those mostly connected with the perceptual task). We study the sensorimotor strategies employed by participants in three experiments with three different SSDs: a minimalist head-mounted SSD, a traditional, also head-mounted SSD (the vOICe) and an enhanced, hand-held echolocation device. Motor activity and fist-person data are registered and analyzed. Results show that participants are able to quickly learn the necessary skills to distinguish geometric shapes. Comparing the sensorimotor strategies utilized with each SSD we identify differential features of the sensorimotor patterns attributable mostly to the device, which account for the emergence of apparatus-based SMCs. These relate to differences in sweeping strategies between SSDs. We identify, also, components related to the emergence of object-related SMCs. These relate mostly to exploratory movements around the border of a shape. The study provides empirical support for SMC theory and discusses considerations about the nature of perception in sensory substitution.

Keywords: human echolocation; sensorimotor approach to perception; sensorimotor contingencies; sensory substitution

References

  1. Percept Mot Skills. 1982 Oct;55(2):623-32 - PubMed
  2. Science. 1967 Feb 10;155(3763):656-64 - PubMed
  3. Neurosci Biobehav Rev. 2014 Apr;41:26-35 - PubMed
  4. Cereb Cortex. 2015 Aug;25(8):2049-64 - PubMed
  5. Perception. 1974;3(1):101-4 - PubMed
  6. J Neural Eng. 2005 Dec;2(4):R13-26 - PubMed
  7. Percept Psychophys. 1988 Sep;44(3):222-32 - PubMed
  8. Conscious Cogn. 2010 Mar;19(1):501-3 - PubMed
  9. IEEE Trans Biomed Eng. 1992 Feb;39(2):112-21 - PubMed
  10. Atten Percept Psychophys. 2014 Aug;76(6):1828-37 - PubMed
  11. IEEE Trans Neural Syst Rehabil Eng. 2004 Mar;12(1):131-9 - PubMed
  12. Perception. 2011;40(7):840-52 - PubMed
  13. Perception. 2011;40(9):1120-35 - PubMed
  14. Neuroimage. 2005 Jun;26(2):573-80 - PubMed
  15. Behav Brain Sci. 1997 Mar;20(1):57-66; discussion 66-90 - PubMed
  16. PLoS One. 2008 Mar 26;3(3):e1840 - PubMed
  17. Perception. 1999;28(8):1013-29 - PubMed
  18. Perception. 2007;36(12):1736-51 - PubMed
  19. Restor Neurol Neurosci. 2014;32(2):247-57 - PubMed
  20. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:3543-6 - PubMed
  21. PLoS One. 2012;7(3):e33136 - PubMed
  22. Front Hum Neurosci. 2014 Jul 30;8:551 - PubMed
  23. Nat Neurosci. 2007 Jun;10(6):687-9 - PubMed
  24. Conscious Cogn. 2010 Mar;19(1):492-500 - PubMed
  25. Cogn Psychol. 1980 Jan;12(1):97-136 - PubMed
  26. Prog Brain Res. 2001;134:427-45 - PubMed
  27. Conscious Cogn. 2010 Dec;19(4):938-52 - PubMed
  28. J Acoust Soc Am. 1990 Apr;87(4):1732-7 - PubMed
  29. Sci Rep. 2012;2:949 - PubMed
  30. Exp Brain Res. 2014 Jun;232(6):1915-25 - PubMed
  31. Brain Res. 2008 Nov 25;1242:263-75 - PubMed
  32. Conscious Cogn. 2014 Aug;28:47-63 - PubMed
  33. Percept Psychophys. 2006 May;68(4):535-42 - PubMed
  34. Perception. 2007;36(3):416-30 - PubMed
  35. Cogn Psychol. 1987 Jul;19(3):342-68 - PubMed
  36. Trends Cogn Sci. 2003 Jul;7(7):285-286 - PubMed
  37. Behav Brain Sci. 2001 Oct;24(5):939-73; discussion 973-1031 - PubMed
  38. J Rehabil Res Dev. 1998 Oct;35(4):427-30 - PubMed
  39. Cogn Sci. 2009 Aug;33(6):1036-58 - PubMed
  40. Front Hum Neurosci. 2012 Mar 01;6:37 - PubMed
  41. Front Neurosci. 2014 Sep 05;8:283 - PubMed

Publication Types