Display options
Share it on

Front Plant Sci. 2015 Jun 02;6:386. doi: 10.3389/fpls.2015.00386. eCollection 2015.

Pool size measurements facilitate the determination of fluxes at branching points in non-stationary metabolic flux analysis: the case of Arabidopsis thaliana.

Frontiers in plant science

Robert Heise, Alisdair R Fernie, Mark Stitt, Zoran Nikoloski

Affiliations

  1. Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology Potsdam, Germany.
  2. Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology Potsdam, Germany.
  3. System Regulation Group, Max Planck Institute of Molecular Plant Physiology Potsdam, Germany.

PMID: 26082786 PMCID: PMC4451360 DOI: 10.3389/fpls.2015.00386

Abstract

Pool size measurements are important for the estimation of absolute intracellular fluxes in particular scenarios based on data from heavy carbon isotope experiments. Recently, steady-state fluxes estimates were obtained for central carbon metabolism in an intact illuminated rosette of Arabidopsis thaliana grown photoautotrophically (Szecowka et al., 2013; Heise et al., 2014). Fluxes were estimated therein by integrating mass-spectrometric data of the dynamics of the unlabeled metabolic fraction, data on metabolic pool sizes, partitioning of metabolic pools between cellular compartments and estimates of photosynthetically inactive pools, with a simplified model of plant central carbon metabolism. However, the fluxes were determined by treating the pool sizes as fixed parameters. Here we investigated whether and, if so, to what extent the treatment of pool sizes as parameters to be optimized in three scenarios may affect the flux estimates. The results are discussed in terms of benchmark values for canonical pathways and reactions, including starch and sucrose synthesis as well as the ribulose-1,5-bisphosphate carboxylation and oxygenation reactions. In addition, we discuss pathways emerging from a divergent branch point for which pool sizes are required for flux estimation, irrespective of the computational approach used for the simulation of the observable labeling pattern. Therefore, our findings indicate the necessity for development of techniques for accurate pool size measurements to improve the quality of flux estimates from non-stationary flux estimates in intact plant cells in the absence of alternative flux measurements.

Keywords: Arabidopsis thaliana; carbon metabolism; flux profiling; isotopic labeling; isotopically non-stationary; metabolic flux analysis; metabolite pool sizes; photoautotrophic growth

References

  1. Mol Plant. 2014 May;7(5):893-911 - PubMed
  2. Metab Eng. 2007 Jan;9(1):68-86 - PubMed
  3. Biochem J. 2015 Jan 1;465(1):27-38 - PubMed
  4. Curr Opin Biotechnol. 2013 Dec;24(6):979-86 - PubMed
  5. Annu Rev Plant Biol. 2004;55:85-107 - PubMed
  6. BMC Bioinformatics. 2008 Mar 18;9:152 - PubMed
  7. Plant Physiol. 1984 Jul;75(3):542-7 - PubMed
  8. Plant Biol (Stuttg). 2013 Jul;15(4):648-55 - PubMed
  9. Biochem J. 1996 Dec 1;320 ( Pt 2):493-8 - PubMed
  10. Metab Eng. 2001 Jul;3(3):195-206 - PubMed
  11. Biotechnol Bioeng. 1997 Jul 5;55(1):118-35 - PubMed
  12. Plant Physiol. 2010 Sep;154(1):311-23 - PubMed
  13. Nat Chem Biol. 2006 Oct;2(10):529-30 - PubMed
  14. Adv Biochem Eng Biotechnol. 2005;92:145-72 - PubMed
  15. Nat Protoc. 2014 Aug;9(8):1803-24 - PubMed
  16. Biophys J. 2007 Sep 15;93(6):2255-64 - PubMed
  17. Plant Physiol. 2010 Feb;152(2):428-44 - PubMed
  18. Annu Rev Chem Biomol Eng. 2013;4:211-37 - PubMed
  19. Plant Cell. 2013 Feb;25(2):694-714 - PubMed
  20. Biotechnol Bioeng. 1997 Jul 5;55(1):101-17 - PubMed
  21. Front Plant Sci. 2011 Aug 11;2:38 - PubMed
  22. Metab Eng. 2011 Nov;13(6):656-65 - PubMed
  23. Curr Opin Biotechnol. 2011 Feb;22(1):103-8 - PubMed
  24. Curr Opin Biotechnol. 2013 Feb;24(1):48-53 - PubMed
  25. Photosynth Res. 2003;75(1):1-10 - PubMed
  26. J Magn Reson. 2006 Jan;178(1):1-10 - PubMed
  27. Plant Physiol. 2008 Oct;148(2):704-18 - PubMed
  28. Curr Opin Biotechnol. 2015 Aug;34:82-90 - PubMed
  29. Appl Microbiol Biotechnol. 2011 Sep;91(5):1247-65 - PubMed
  30. Biotechnol Bioeng. 2013 Dec;110(12):3164-76 - PubMed
  31. J Biomol NMR. 2011 Apr;49(3-4):267-80 - PubMed
  32. Biochimie. 2009 Jun;91(6):697-702 - PubMed
  33. Plant Cell Environ. 2009 Sep;32(9):1241-57 - PubMed
  34. Nat Biotechnol. 2010 Mar;28(3):245-8 - PubMed
  35. Proc Natl Acad Sci U S A. 2014 Nov 25;111(47):16967-72 - PubMed
  36. Mol Plant. 2014 Jan;7(1):137-55 - PubMed
  37. J Exp Bot. 2012 Mar;63(6):2309-23 - PubMed
  38. J Exp Bot. 2005 Jan;56(410):267-72 - PubMed
  39. Curr Opin Biotechnol. 2015 Aug;34:189-201 - PubMed
  40. Phytochemistry. 2007 Aug-Sep;68(16-18):2302-12 - PubMed
  41. Plant J. 2006 Feb;45(4):490-511 - PubMed
  42. Nat Protoc. 2008;3(8):1328-40 - PubMed

Publication Types